首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature and the field dependence of the effective magnetic penetration depth (lambdaeff) in the vortex state of a d-wave superconductor, as measured by muon spin rotation (muSR) experiments, is calculated using a nonlocal London model. We show that at temperatures below [EQUATION: SEE TEXT], the linear T dependence of lambda-2eff crosses over to a T3 dependence. This could provide an explanation for the low temperature flattening of the lambda-2eff curve observed in a recent muSR experiment.  相似文献   

2.
We report 115In nuclear magnetic resonance (NMR) measurements in CeCoIn5 at low temperature (T approximately 70 mK) as a function of the magnetic field (H0) from 2 to 13.5 T applied perpendicular to the c axis. A NMR line shift reveals that below 10 T the spin susceptibility increases as sqrt[H0]. We associate this with an increase of the density of states due to the Zeeman and Doppler-shifted quasiparticles extended outside the vortex cores in a d-wave superconductor. Above 10 T a new superconducting state is stabilized, possibly the modulated phase predicted by Fulde, Ferrell, Larkin, and Ovchinnikov. This phase is clearly identified by a strong and linear increase of the NMR shift with the field, before a jump at the first order transition to the normal state.  相似文献   

3.
We report muon-spin rotation and relaxation (muSR) measurements on single crystals of the electron-doped high-T(c) superconductor Pr2-xCexCuO4. In a zero external magnetic field, superconductivity is found to coexist with dilute Cu spins that are static on the muSR time scale. In an applied field, we observe a mu(+)-Knight shift that is primarily due to the magnetic moment induced on the Pr ions. Below the superconducting transition temperature T(c), an additional source of local magnetic field appears throughout the volume of the sample. This finding is shown to be consistent with field-induced antiferromagnetic ordering of the Cu spins. Measurements of the temperature dependence of the in-plane magnetic penetration depth lambda(ab) in the vortex state are also presented.  相似文献   

4.
The organic radical-ion salt DEOCC-TCNQF4 contains linear chains of stacked molecules with significant Heisenberg antiferromagnet interactions along the chain and extremely weak interactions between the chains. Zero-field muSR has confirmed the absence of long-range magnetic order down to 20 mK and field-dependent muSR is found to be consistent with diffusive motion of the spin excitations. The anisotropic spin dynamics and the upper boundary for magnetic ordering temperature both indicate interchain magnetic coupling /J'/<7 mK. As the intrachain coupling J is 110 K, /J'/J/ is significantly less than 10(-4). This system therefore provides one of the most ideal examples of the one-dimensional S=1/2 Heisenberg antiferromagnet yet discovered.  相似文献   

5.
Resistively detected nuclear magnetic resonance (NMR) is observed inside the ringlike structure, with a quantized Hall conductance of 6e(2)/h, in the phase diagram of a two-subband electron system. The NMR signal persists up to 470 mK and is absent in other states with the same quantized Hall conductance. The nuclear spin-lattice relaxation time T1, is found to decrease rapidly towards the ring center. A strong dynamic nuclear polarization by the biasing current has also been observed only inside the ring. These observations are consistent with the assertion of the ringlike region being a ferromagnetic state that is accompanied by collective spin excitations.  相似文献   

6.
A twin crystal of Ga was investigated in the temperature and field ranges of 0.5 to 10 mK and 60 to 250 mT, respectively. In these fields the magnetic interaction is too large to be treated as a perturbation of the quadrupolar interaction. Therefore, the eigenvalues of the Schrödinger equation were calculated numerically, and then used to determine the crystalline axes by pulsed NMR on 69Ga and 71Ga. The temperature dependence of the NMR line intensities was measured using 195Pt-NMR for thermometry. The observed intensities do not follow the theoretical expectations for a spin system of low nuclear polarization. In addition, a temperature-dependent frequency shift was observed. These results suggest that the effect of interactions between the spins, as well as more complicated spin dynamics, need to be considered in order to use gallium as an absolute thermometer at temperatures below 1 mK.  相似文献   

7.
We present muSR experiments in the S=3/2 kagomé bilayer compound Ba(2)Sn(2)ZnGa(10-7p)Cr(7p)O22 [BSZCGO(p)] and compare it to the isostructural SrCr(9p)Ga(12-9p)O19 [SCGO(p)], including for the latter new results for p > or =0.89. Quantum-dynamical low energy magnetic excitations are evidenced in this novel compound. We study the evolution of the muon relaxation rate with p, T, and field. A phenomenological model for the muon relaxation based on sporadic dynamics due to spin excitations in a singlet sea proposed by Uemura et al. is extended to all fields and T range. Its connection to the RVB picture is discussed, and we argue that such coherent states might mediate the interactions between "impurities" which induce the spin glass freezing.  相似文献   

8.
A dilute101mRhCr alloy has been investigated by means of low temperature nuclear orientation in the temperature range of 6–60 mK. The magnetic hyperfine field has been found proportional to the macroscopic chromium magnetization and follows even at these low temperatures an Overhauser distribution. The maximum hyperfine field value is Bo (T=6 mK)=7.0(5) T. A Knight shift of –16% affects the external magnetic field at the nuclear site.  相似文献   

9.
Anupam  C Geibel  Z Hossain 《J Phys Condens Matter》2012,24(32):326002, 1-326002, 7
The results of the magnetic susceptibility, isothermal magnetization, heat capacity, electrical resistivity and magnetoresistance measurements on polycrystalline Eu(3)Ni(4)Ga(4) are presented. Eu(3)Ni(4)Ga(4) forms in Na(3)Pt(4)Ge(4)-type cubic crystal structure (space group [Formula: see text]). The temperature dependence of the magnetic susceptibility of Eu(3)Ni(4)Ga(4) confirms the divalent state (Eu(2+)) of Eu ions with an effective magnetic moment μ(eff)?=?7.98?μ(B). At low fields, e.g.?at 0.01?T, a magnetic phase transition to an antiferromagnetically ordered state occurs at T(N)?=?10.9?K, which is further confirmed by the temperature dependence of the heat capacity and electrical resistivity. The field dependence of isothermal magnetization at 2?K reveals the presence of two field induced metamagnetic transitions at H(c1) and H(c2)?=?0.55 and 1.2?T, respectively and a polarized phase above H(PO)?=?1.7?T. The reduced jump in the heat capacity at the transition temperature, ΔC|(T(N))?=?13.48?J/mol-Eu?K would indicate an amplitude modulated (AM) antiferromagnetic structure. An interesting feature is that a large negative magnetoresistance, MR?=?[ρ(H)?-?ρ(0)]/ρ(0), is observed in the vicinity of magnetic transition even up to 2T(N). Similar large magnetoresistance has been observed in the paramagnetic state in some Gd and Eu based alloys and has been attributed to the magneto-polaronic effect.  相似文献   

10.
We have studied the ground state of a fullerene-based magnet, the alpha;{'}-phase tetra-kis-(dimethylamino)-ethylene-C60 (alpha'-TDAE-C(60)), by electron spin resonance and magnetic torque measurements. Below T(N) = 7 K, nonparamagnetic field dependent resonances with a finite excitation gap (1.7 GHz) are observed along the a axis. Strong enhancement in their intensity as temperature is decreased is inconsistent with excitation from a singlet state, which had been proposed for the alpha'-phase ground state. Below T(N), nonquadratic field dependence of the magnetic torque signal is also observed in contrast to quadratic field dependence in the paramagnetic phase. The angle-dependent torque signals below T(N) indicate the existence of an anisotropy of the bulk magnetization. From both experiments, we propose an antiferromagnetic ground state driven by the cooperative orientational ordering of C(60) in the alpha'-TDAE-C(60).  相似文献   

11.
Precise hyperfine field value of zinc in iron has been determined by nuclear magnetic resonance on oriented nuclei (NMR/ON): Bhf (ZnFe)=−18.785 (35) T at 7 mK. The relaxation constant of Zn in iron is established CK=14(3) Ks. The new hyperfine field value of zinc in iron allows a more precise reevaluation of the magnetic moments of69mZn and71mZn measured with NMR/ON. and the NICOLE Collaboration, CERN  相似文献   

12.
We report on the observation of weak localization in arrays of (Ga,Mn)As nanowires at millikelvin temperatures. The corresponding phase coherence length L phi is typically between 100 and 200 nm at 20 mK. Strong spin-orbit interaction in the material is manifested by a weak antilocalization correction around zero magnetic field.  相似文献   

13.
In order to gain insights into the origin of colossal magnetoresistance (CMR) in manganese oxides, we performed a 139La NMR study in the double-layered compound La(1.2)Sr(1.8)Mn2O7. We find that above the Curie temperature T(C) = 126 K, applying a magnetic field induces a long-range ferromagnetic order that persists up to T = 330 K. The critical field at which the induced magnetic moment is saturated coincides with the field at which the CMR effect reaches a maximum. Our results therefore indicate that the CMR observed above T(C) in this compound is due to the field-induced ferromagnetism that produces a metallic state via the double exchange interaction.  相似文献   

14.
We have studied magnetotransport in arrays of niobium filled grooves in an InAs/Al(x)Ga(1-x)Sb heterostructure. The critical field of up to 2.6 T permits one to enter the quantum Hall regime. In the superconducting state, we observe strong magnetoresistance oscillations, whose amplitude exceeds the Shubnikov-de Haas oscillations by a factor of about 2, when normalized to the background. Additionally, we find that above a geometry-dependent magnetic field value the sample in the superconducting state has a higher longitudinal resistance than in the normal state. Both observations can be explained with edge channels populated with electrons and Andreev-reflected holes.  相似文献   

15.
We report temperature dependence of nuclear orientation (NO), and the first observation of NMR/ON on Cs in iron.132, 136Cs were implanted at room temperature into polycrystalline and single crystal iron. NO values for the (average) magnetic hyperfine field Bhf (CsFe) are close to 34T, intermediate between the value of 40.7T found in on-line samples made at mK temperatures and the NMR/ON value of 27.8 (2)T. The latter studies. The site/field distribution is briefly discussed. ISOLDE Collaboration, CERN  相似文献   

16.
NMR measurement of 157Gd has been performed in zero external field in (Ce1?xGdx)Ru2 for x = 0.100and 0.119 at low temperature down to 25 mK. Zero field NMR is observed with large enhancements both of H1 and the intensity of the signal that are characteristic in ferromagnet. T1T increases rapidly with decreasing temperature, which is attributed to the appearance of the superconducting energy gap whose magnitude is estimated to be 0.066kTCforx = 0.100. The NMR intensity in the superconducting state decreases not so drastically as expected in the perfect Meissner state. These results are qualitatively the same as reported previously for x ≥ 0.105 and T ≥ 60 mK. The results suggest that the system is in the state of self-induced vortices predicted theoretically.  相似文献   

17.
We report specific heat measurements of the heavy fermion superconductor CeCoIn5 in the vicinity of the superconducting critical field H(c2), with magnetic fields in the [110], [100], and [001] directions, and at temperatures down to 50 mK. The superconducting phase transition changes from second to first order for fields above 10 T for H parallel [110] and H parallel [100]. In the same range of magnetic fields, we observe a second specific heat anomaly within the superconducting state. We interpret this anomaly as a signature of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) inhomogeneous superconducting state. We obtain similar results for H parallel [001], with the FFLO state occupying a smaller part of the phase diagram.  相似文献   

18.
101Ru-Knight shift (101K) in the spin-triplet superconductor Sr2RuO4 was measured under magnetic fields parallel to the c axis (perpendicular to the RuO2 plane), which is the promising superconducting (SC) d-vector direction in a zero field. We succeeded in measuring K(c) in the field range from 200 to 1200 Oe and at temperatures down to 80 mK, using nuclear-quadrupole-resonance spectra. We found that (101)K(c) is invariant with respect to the field and temperature on passing through H(c2) and T(c) above 200 Oe. This indicates that the spin susceptibility along the c axis does not change in the SC state, at least, in the field greater than 200 Oe. The results imply that the SC d vector is in the RuO2 plane when the magnetic field is applied to the c axis.  相似文献   

19.
High-field specific heat measurements on BaCo(2)V(2)O(8), which is a good realization of an S=1/2 quasi-one-dimensional (1D) Ising-like antifferomagnet, have been performed in magnetic fields up to 12 T along the chain and at temperature down to 200 mK. We have found a new magnetic ordered state in the field-induced phase above H(c) approximately 3.9 T. We suggest that a novel type of the incommensurate order, which is caused by the quantum effect inherent in the S=1/2 quasi-1D Ising-like antiferromagnet, appears in the field-induced phase.  相似文献   

20.
We report (17)O NMR measurements in the S=1/2 (Cu(2+)) kagome antiferromagnet Herbertsmithite ZnCu(3)(OH)(6)Cl(2) down to 45 mK in magnetic fields ranging from 2 to 12 T. While Herbertsmithite displays a gapless spin-liquid behavior in zero field, we uncover an instability toward a spin-solid phase at sub-Kelvin temperature induced by an applied magnetic field. The latter phase shows largely suppressed moments ?0.1 μ(B) and gapped excitations. The H-T phase diagram suggests the existence of a quantum critical point at the small but finite magnetic field μ(0)H(c)=1.55(25) T. We discuss this finding in light of the perturbative Dzyaloshinskii-Moriya interaction which was theoretically proposed to sustain a quantum critical regime for the quantum kagome Heisenberg antiferromagnet model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号