首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomembranes are complex systems that regulate numerous biological processes. Lipid phases that constitute these membranes influence their properties and transport characteristics. Here, we demonstrate the potential of short-range dynamics imaging (excited-state lifetime, rotational diffusion, and order parameter) as a sensitive probe of lipid phases in giant unilamellar vesicles (GUVs). Liquid-disordered and gel phases were labeled with Bodipy-PC at room temperature. Two-photon fluorescence lifetime imaging microscopy of single-phase GUVs reveals more heterogeneity in fluorescence lifetimes of Bodipy in the gel phase (DPPC: 3.8+/-0.6 ns) as compared with the fluid phase (DOPC: 5.2+/-0.2 ns). The phase-specificity of excited-state lifetime of Bodipy-PC is attributed to the stacking of ordered lipid molecules that possibly enhances homo-FRET. Fluorescence polarization anisotropy imaging also reveals distinctive molecular order that is phase specific. The results are compared with DiI-C12-labeled fluid GUVs to investigate the sensitivity of our fluorescence dynamics assay to different lipid-marker interactions. Our results provide a molecular perspective of lipid phase dynamics and the nature of their microenvironments that will ultimately help our understanding of the structure-function relationship of biomembranes in vivo. Furthermore, these ultrafast excited-state dynamics will be used for molecular dynamics simulation of lipid-lipid, lipid-marker and lipid-protein interactions.  相似文献   

2.
The protective properties of trehalose on cholesterol-containing lipid dipalmitoylphosphatidylcholine (DPPC) bilayers are studied through molecular simulations. The ability of the disaccharide to interact with the phospholipid headgroups and stabilize the membrane persists even at high cholesterol concentrations and restricts some of the changes to the structure that would otherwise be imposed by cholesterol molecules. Predictions of bilayer properties such as area per lipid, tail ordering, and chain conformation support the notion that the disaccharide decreases the main melting transition in these multicomponent model membranes, which correspond more closely to common biological systems than pure bilayers. Molecular simulations indicate that the membrane dynamics are slowed considerably by the presence of trehalose, indicating that high sugar concentrations would serve to avert possible phase separations that could arise in mixed phospholipid systems. Various time correlation functions suggest that the character of the modifications in lipid dynamics induced by trehalose and cholesterol is different in the hydrophilic and hydrophobic regions of the membrane.  相似文献   

3.
利用Langmuir-Blodgett(LB)技术制备了不同表面压力下的1,2-二油酸-甘油-3-磷脂酰胆碱(DOPC)/1,2-二棕榈酸甘油-3-磷脂酰胆碱(DPPC)(摩尔比为1:1)和DOPC/DPPC/Chol(摩尔比为2:2:1)单层膜, 对单层膜内分子间的相互作用进行了热力学分析, 并用荧光显微镜和原子力显微镜对其形态进行了观测.热力学分析表明, DOPC与DPPC分子在单层膜结构中相互作用为排斥力, 诱导单层膜出现相变; DOPC, DPPC与胆固醇(Chol)间的相互作用均为吸引力, 当表面压力(π)大于18 mN/m时, DPPC与胆固醇的作用力大于DOPC.荧光显微镜观测表明, DOPC/DPPC单层膜出现明显相分离现象, 富含DPPC微区成“花形”结构, 且随着表面压力的升高微区逐渐增大, “花瓣”增多; 当胆固醇加入到DOPC/DPPC体系时, 单层膜相态由液相与凝胶相共存转变为液态无序相与液态有序相共存结构, 富含DPPC的微区形状从“花形”转变成“圆形”.原子力显微镜对单层膜的表征验证了荧光显微镜的观测结果, 表明胆固醇加入到DOPC/DPPC体系中对单层膜排列具有明显的影响, 压力和溶液状态等是影响脂膜结构的重要因素.  相似文献   

4.
The fluorescence spectra of 6-propionyl-2-(dimethylamino)naphthalene (Prodan) were observed as a function of pressure for the bilayer membrane systems of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC). The wavelength of the emission maximum, lambdamax, was found to be 480, 430, and 500 nm for the liquid crystalline (Lalpha), ripple gel (P'beta), and pressure-induced interdigitated gel (LbetaI) phase, respectively. Since the lambdamax reflects the solvent property around the probe molecules, we could speculate on the location of the Prodan molecules in the bilayer membranes; in the Lalpha phase of the lipid bilayer, the Prodan molecules distribute around the phosphate of the lipids (i.e. the polar region). The Lalpha/P'beta phase transition caused the Prodan molecules to move into the less polar region near the glycerol backbone. The fluorescence intensity of the Prodan in the P'beta phase was dependent on the chain length of the lipids and on pressure; the shorter the chain length of the lipid, the stronger the fluorescence intensity of the Prodan. Moreover, for the DLPC bilayer membrane system, the fluorescence intensity at 430 nm increased with increasing pressure, indicating that the partition of Prodan into the DLPC bilayer membrane is promoted by applying pressure. In the case of the DPPC and DSPC bilayers, as the pressure increased further, the pressure-induced interdigitation caused the Prodan molecules to squeeze out of the glycerol backbone region and to move the hydrophilic region near the bilayer surface. The ratio of fluorescence intensity at 480 nm to that at 430 nm, F480/F430, showed a sharp change at the phase-transition pressure. In the case of the DPPC and DSPC bilayers, the values of F480/F430 showed an abrupt increase above a certain pressure higher than the Lalpha/P'beta transition pressure, which corresponds to the interdigitation from the P'beta to the LbetaI phase. The plot of F480/F430 versus pressure is available for recognition of the bilayer phase transitions, especially the bilayer interdigitation.  相似文献   

5.
Vesicle fissions are very important processes of biomembranes in cells, but their mechanisms are not clear and are controversial. Using the single giant unilamellar vesicle (GUV) method, we recently found that low concentrations (less than the critical micelle concentration (CMC)) of lysophosphatidylcholine (lyso-PC) induced the vesicle fission of GUVs of dipalmitoylphosphatidylcholine/cholesterol(6/4) (DPPC/chol(6/4)) membranes and sphingomyelin/cholesterol membranes (6/4) in the liquid-ordered (lo) phase. In this report, to elucidate its mechanism, we have investigated the effect of low concentrations (much less than their CMC) of other amphiphiles with a single long hydrocarbon chain (i.e., single long chain amphiphiles) on DPPC/chol(6/4) GUVs as well as the effect of the membrane composition on the lyso-PC-induced vesicle fission. We found that low concentrations of single long chain amphiphiles (lyosophosphatidic acid, octylglucoside, and sodium dodecyl sulfate) induced the shape change from a prolate to two spheres connected by a very narrow neck, indicating that the single long chain amphiphiles can be partitioned into the external monolayer in the lo phase of the GUV from the aqueous solution. As the single long chain amphiphile concentrations were increased, all of them induced vesicle fission of DPPC/chol(6/4) GUVs above their threshold concentrations. To elucidate the role of cholesterol in the single long chain amphiphile-induced vesicle fission, we investigated the effect of lyso-PC on GUVs of dioleoyl-PC (DOPC)/chol(6/4) membranes in the Lalpha phase; no vesicle fission occurred, indicating that cholesterol in itself did not play an important role in the vesicle fission. Finally, to elucidate the effect of the inclusion of DOPC in the lo-phase membrane of GUVs on the lyso-PC-induced vesicle fission of the DPPC/chol(6/4) GUV, we investigated the effect of low concentrations of lyso-PC on GUVs of DPPC/DOPC/chol membranes. With an increase in DOPC concentration in the membrane, the threshold concentration of lyso-PC increased. At and above 30 mol % DOPC, no vesicle fission occurred. On the basis of these results, we have proposed a hypothesis of the mechanism of the single long chain amphiphile-induced vesicle fission of a GUV of a lo-phase membrane.  相似文献   

6.
We construct a coarse-grained (CG) model for dipalmitoylphosphatidylcholine (DPPC)/cholesterol bilayers and apply it to large-scale simulation studies of lipid membranes. Our CG model is a two-dimensional representation of the membrane, where the individual lipid and sterol molecules are described by pointlike particles. The effective intermolecular interactions used in the model are systematically derived from detailed atomic-scale molecular dynamics simulations using the Inverse Monte Carlo technique, which guarantees that the radial distribution properties of the CG model are consistent with those given by the corresponding atomistic system. We find that the coarse-grained model for the DPPC/cholesterol bilayer is substantially more efficient than atomistic models, providing a speedup of approximately eight orders of magnitude. The results are in favor of formation of cholesterol-rich and cholesterol-poor domains at intermediate cholesterol concentrations, in agreement with the experimental phase diagram of the system. We also explore the limits of the coarse-grained model, and discuss the general validity and applicability of the present approach.  相似文献   

7.
Variations in two-dimensional membrane structures on the molecular length scale are considered to have an effect on the mechanisms by which living cell membranes maintain their functionality. We created a molecular model of a patterned bilayer to asses the static and dynamic variations of membrane lateral and transbilayer distribution in two-component lipid bilayers on the molecular level. We study DSPC (distearoylphosphatidylcholine) nanometer domains in a fluid DLPC (dilauroylphosphatidylcholine) background. The system exhibits coexisting fluid and gel phases and is studied on a microsecond time scale. We characterize three different kinds of patterns: symmetric domains, asymmetric domains, and symmetric-asymmetric domains. Preferred bilayer configurations on the nanoscale are those that minimize the hydrophobic mismatch. We find nanoscale patterns to be dynamic structures with mainly lateral and rotational diffusion affecting their stability on the microsecond time scale.  相似文献   

8.
To understand more fully the effect of polyunsaturated fatty acids (PUFAs) on lipid bilayers, we investigated the effects of treatment with fatty acids on the properties of a model membrane. Three kinds of liposomes comprising dipalmitoylphosphatidylcholine (DPPC), dioleylphosphatidylcholine (DOPC), and cholesterol (Ch) were used as the model membrane, and the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and detergent insolubility were determined. Characterization of the liposomes clarified that DPPC, DPPC/Ch, and DPPC/DOPC/Ch existed as solid-ordered phase (L beta), liquid-ordered phase (l o), and a mixture of l o and liquid-disordered phase (L alpha) membranes at room temperature. Treatment with unsaturated fatty acids such as oleic acid (OA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) markedly decreased the fluorescence anisotropy value and detergent insolubility. PUFAs and OA had different effects on the model membranes. In DPPC liposomes, the most prominent change was induced by PUFAs, whereas, in DPPC/Ch and DPPC/DOPC/Ch liposomes, OA had a stronger effect than PUFAs. The effect of PUFAs was strongly affected by the amount of Ch in the membrane, which confirmed a specific effect of PUFAs on the Ch-poor membrane domain. We further explored the effect of fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted on the membranes even when incorporated in emulsion form. These findings suggest that treatment with PUFAs increases the segregation of ordered and disordered phase domains in membranes.  相似文献   

9.
The purpose was to develop a stable biological membrane coating for CE useful for membrane interaction studies. The effect of cholesterol (chol) on the stability of dipalmitoylphosphatidylcholine (DPPC) and sphingomyelin (SM) coatings was studied. In addition, a fused-silica capillary for CE was coated with human red blood cell (RBC) ghost lipids. Liposomes prepared of DPPC/SM with and without chol or RBC ghost lipids were flushed through the capillary and the stability of the coating was measured electrophoretically. Similar mixtures of DPPC/SM with and without chol were further studied by differential scanning calorimetry. The presence of phosphatidylcholine as a basic component in the coating solution of DPPC/SM/chol was found to be essential to achieve a good and stable coating. The results also confirmed the stability of coatings obtained with solutions of DPPC with 0-30 mol% of chol and SM in different ratios, which more closely resemble natural membranes. Finally, the electrophoretic measurements revealed that a stable coating is formed when capillaries are coated with liposomes of RBC ghost lipids.  相似文献   

10.
In this paper a rapid and highly efficient method for controlled incorporation of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent molecules have two consecutive functions: First, they trigger rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their carrier particles, so called fusogenic liposomes, and second, after insertion into cellular membranes these molecules enable fluorescence imaging of cell membranes and membrane traffic processes. We tested the fluorescent derivatives of the following essential membrane lipids for membrane fusion: Ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, ganglioside, cholesterol, and cholesteryl ester. Our results show that all probed lipids could more efficiently be incorporated into the plasma membrane of living cells than by using other methods. Moreover, labeling occurred in a gentle manner under classical cell culture conditions reducing cellular stress responses. Staining procedures were monitored by fluorescence microscopy and it was observed that sphingolipids and cholesterol containing free hydroxyl groups exhibit a decreased distribution velocity as well as a longer persistence in the plasma membrane compared to lipids without hydroxyl groups like phospholipids or other artificial lipid analogs. After membrane staining, the fluorescent molecules were sorted into membranes of cell organelles according to their chemical properties and biological functions without any influence of the delivery system.  相似文献   

11.
Liquid-ordered phase (lo phase) of lipid membranes has properties that are intermediate between those of liquid-crystalline phase and those of gel phase and has attracted much attention in both biological and biophysical aspects. Rafts in the lo phase in biomembranes play important roles in cell function of mammalian cells such as signal transduction. In this report, we have prepared giant unilamellar vesicles (GUVs) of lipid membranes in the lo phase and investigated their physical properties using phase-contrast microscopy and fluorescence microscopy. GUVs of dipalmitoyl-phosphatidylcholine (DPPC)/cholesterol membranes and also GUVs of sphingomyelin (SM)/cholesterol membranes in the lo phase in water were formed at 20-37 degrees C successfully, when these membranes contained >/=30 mol % cholesterol. The diameters of GUVs of DPPC/cholesterol and SM/cholesterol membranes did not change from 50 to 28 degrees C, supporting that the membranes of these GUVs were in the lo phase. To elucidate the interaction of a substance with a long hydrocarbon chain with the lo phase membrane, we investigated the interaction of low concentrations (less than critical micelle concentration) of lysophosphatidylcholine (lyso-PC) with DPPC/cholesterol GUVs and SM/cholesterol GUVs in the lo phase. We found that lyso-PC induced several shape changes and vesicle fission of these GUVs above their threshold concentrations in water. The analysis of these shape changes indicates that lyso-PC can be partitioned into the external monolayer in the lo phase of the GUV from the aqueous solution. Threshold concentrations of lyso-PC in water to induce the shape changes and vesicle fission increased greatly with a decrease in chain length of lyso-PC. Thermodynamic analysis of this result indicates that shape changes and vesicle fission occur at threshold concentrations of lyso-PC in the membrane. These new findings on GUVs of the lo phase membranes indicate that substances with a long hydrocarbon chain such as lyso-PC can enter into the lo phase membrane and also the raft in the cell membrane. We have also proposed a mechanism for the lyso-PC-induced vesicle fission of GUVs.  相似文献   

12.
Combined AFM and two-focus SFCS study of raft-exhibiting model membranes.   总被引:5,自引:0,他引:5  
Dioleoylphosphatidylcholine/sphingomyelin/cholesterol (DOPC/SM/cholesterol) model membranes exhibit liquid-liquid phase separation and therefore provide a physical model for the putative liquid-ordered domains present in cells. Here we present a combination of atomic force microscopy (AFM) imaging, force measurements, confocal fluorescence imaging and two-focus scanning fluorescence correlation spectroscopy (two-focus SFCS) to obtain structural and dynamical information about this model membrane system. Partition coefficients and diffusion coefficients in the different phases were measured with two-focus SFCS for numerous fluorescent lipid analogues and proteins, while being directly related to the lateral organization of the membrane and its mechanical properties probed by AFM. Moreover we show how the combination of these different approaches is effective in reducing artifacts resulting from the use of a single technique.  相似文献   

13.
Dipalmitoylphosphatidylcholine (DPPC) liposomes were employed as membrane models for the investigation of the interaction occurring between methotrexate (MTX) and bilayer lipid matrix. Liposomes were obtained by hydrating a lipid film with 50 mM Tris buffer (pH 7.4). The differential scanning calorimetry (DSC) evaluation of the thermotropic parameters associated with the phase transitions of DPPC liposomes gave useful information about the kind of drug-membrane interaction. The results showed an electrostatic interaction taking place with the negatively charged molecules of MTX and the phosphorylcholine head groups, constituting the outer part of DPPC bilayers. No interaction with the hydrophobic phospholipid bilayer domains was detected, revealing a poor capability of MTX to cross through lipid membranes to reach the interior compartment of a lipid bounded structure. These findings correlate well within vitro biological experiments on MTX cell susceptibility.  相似文献   

14.
Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules.  相似文献   

15.
Metal-reactive organosulfur groups were patterned onto mica and silicon surfaces by dewetting instabilities during the Langmuir-Blodgett (LB) deposition of phase-separated mixed phospholipid monolayers. Monolayers were formed from binary mixtures of dipalmitoylphosphatidylcholine (DPPC), dilauroylphosphatidylcholine (DLPC), and their ω-methyldisulfide-dialkylphosphatidylcholine analogues, DSDPPC and DSDLPC. Patterns of highly parallel stripes of condensed DPPC or DSDPPC, protruding by 0.7-0.9 nm from a fluid matrix of DLPC or DSDLPC, were observed over areas extending at least 30 × 30 μm(2) in the LB films. The average stripe width varied from ca. 150 to 500 nm, depending on the lipid composition and deposition pressure. X-ray photoelectron spectroscopy confirmed that the phospholipid-monolayer-bound methydisulfides react with Au vapor to form a gold-thiolate species. The adsorption of thermally evaporated Au, Ag, and Cu onto DSDPPC/DLPC and DPPC/DSDLPC patterns was investigated by field emission gun scanning electron microscopy (FEGSEM) and atomic force microscopy (AFM). A change in phase contrast is observed in FEGSEM and AFM over the methyldisulfide-functionalized areas following metal deposition due to metal-thiolate bond formation. An increase in step height between the DSDPPC stripes and nonfunctionalized DLPC background following metal deposition, as well as the resistance of the metal-coated DSDPPC or DSDLPC regions to detergent extraction from the surface, attest to a selective metallization of the pattern. Our results indicate that the preferential adsorption of vapor-deposited metal onto the ω-methyldisulfide-terminated phase occurs at submonolayer coverages. The chemical reactivity exhibited by the organosulfur-modified phospholipid LB films make these templates potentially interesting for the fabrication of solid-supported patterns of metal nanostructures.  相似文献   

16.
DC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor and its spatial arrangement on the plasma membrane. We have investigated the nanoscale organization of fluorescently labeled DC-SIGN on intact isolated DCs by means of near-field scanning optical microscopy (NSOM) combined with single-molecule detection. Fluorescence spots of different intensity and size have been directly visualized by optical means with a spatial resolution of less than 100 nm. Intensity- and size-distribution histograms of the DC-SIGN fluorescent spots confirm that approximately 80 % of the receptors are organized in nanosized domains randomly distributed on the cell membrane. Intensity-size correlation analysis revealed remarkable heterogeneity in the molecular packing density of the domains. Furthermore, we have mapped the intermolecular organization within a dense cluster by means of sequential NSOM imaging combined with discrete single-molecule photobleaching. In this way we have determined the spatial coordinates of 13 different individual dyes, with a localization accuracy of 6 nm. Our experimental observations are all consistent with an arrangement of DC-SIGN designed to maximize its chances of binding to a wide range of microorganisms. Our data also illustrate the potential of NSOM as an ultrasensitive, high-resolution technique to probe nanometer-scale organization of molecules on the cell membrane.  相似文献   

17.
Dipalmitoyl phosphatidylcholine (DPPC), one of the main constituents of lung surfactant is mainly responsible for reduction of surface tension to near 0 mN/m during expiration, resisting alveolar collapse. Other unsaturated phospholipids like palmitoyloleoyl phosphatidylglycerol (PG), palmitoyloleoyl phosphatidylcholine (POPC) and neutral lipids help in adsorption of lung surfactant to the air-aqueous interface. Lung surfactant lipids may interact with plasma proteins and hematological agents flooding the alveoli in diseased states. In this study, we evaluated the effects of albumin and erythrocyte membranes on spread films of DPPC alone and mixtures of DPPC with each of PG, POPC, palmitoyloleoyl phosphatidylethanolamine (PE), cholesterol (CHOL) and palmitic acid (PA) in 9:1 molar ratios. Surface tension-area isotherms were recorded using a Langmuir-Blodgett (LB) trough at 37 degrees C with 0.9% saline as the sub-phase. In the presence of erythrocyte membranes, DPPC and DPPC+PA monolayers reached minimum surface tensions of 7.3+/-0.9 and 9.6+/-1.4 mN/m, respectively. Other lipid combinations reached significantly higher minimum surface tensions >18 mN/m in presence of membranes (Newman Keul's test, p<0.05). The relative susceptibility to membrane inhibition was [(DPPC+PG, 7:3)=(DPPC+PG, 9:1)=(DPPC+POPC)=(DPPC+PE)=(DPPC+CHOL)]>[(DPPC+PA)=(DPPC)]. The differential response was more pronounced in case of albumin with DPPC and DPPC+PA monolayers reaching minimum surface tensions less than 2.4 mN/m in presence of albumin, whereas DPPC+PG and DPPC+POPC reached minimum surface tensions of around 20 mN/m in presence of albumin. Descending order of susceptibility of the spread monolayers of lipid mixtures to albumin destabilization was as follows: [(DPPC+PG, 7:3)=(DPPC+PG, 9:1)=(DPPC+POPC)]>[(DPPC+PE)=(DPPC+CHOL)]>[(DPPC+PA)=(DPPC)] The increase in minimum surface tension in presence of albumin and erythrocyte membranes was accompanied by sudden increases in compressibility at surface tensions of 15-30 mN/m. This suggests a monolayer destabilization and could be indicative of phase transitions in the mixed lipid films due to the presence of the hydrophobic constituents of erythrocyte membranes.  相似文献   

18.
The role of lipid domain size and protein-lipid interfaces in the thermotropic phase transition of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) bilayers in Nanodiscs was studied using small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and generalized polarization (GP) of the lipophilic probe Laurdan. Nanodiscs are water-soluble, monodisperse, self-assembled lipid bilayers encompassed by a helical membrane scaffold protein (MSP). MSPs of different lengths were used to define the diameter of the Nanodisc lipid bilayer from 76 to 108 A and the number of DPPC molecules from 164 to 335 per discoidal structure. In Nanodiscs of all sizes, the phase transitions were broader and shifted to higher temperatures relative to those observed in vesicle preparations. The size dependences of the transition enthalpies and structural parameters of Nanodiscs reveal the presence of a boundary lipid layer in contact with the scaffold protein encircling the perimeter of the disc. The thickness of this annular layer was estimated to be approximately 15 A, or two lipid molecules. SAXS was used to measure the lateral thermal expansion of Nanodiscs, and a steep decrease of bilayer thickness during the main lipid phase transition was observed. These results provide the basis for the quantitative understanding of cooperative phase transitions in membrane bilayers in confined geometries at the nanoscale.  相似文献   

19.
Steady-state and dynamic fluorescence properties of 6-lauroyl-2-dimethylaminonaphthalene (Laurdan) have been used to ascertain the coexistence of separate phase domains and their dynamic properties in phospholipid vesicles composed of different mole ratios of dilauroyl- and dipalmitoyl-phosphatidylcholine (DLPC and DPPC, respectively). The recently introduced generalized polarization together with time-resolved emission spectra have been utilized for detecting changes. The results indicate the coexistence of phospholipid phase domains in vesicle compositions in the range between 30 mol% and 70 mol% DPPC in DLPC. Below and above these concentrations a homogeneous phase is observed, with averaged properties. In the case of coexisting phase domains, the properties of each individual phase are largely influenced by the presence of the other phase. Implications on fluctuations between the coexisting phases and on the size and shape of domains are discussed.  相似文献   

20.
The organization of the polyene antibiotic filipin in membranes containing cholesterol is a controversial matter of debate. Two contradictory models exist, one suggesting a parallel and the other perpendicular organization of filipin with respect to the plane of the membrane. UV-vis linear dichroism, ATR-FTIR, and fluorescence anisotropy decay techniques were combined to study the orientation of filipin in model systems of membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) with and without cholesterol. Filipin's orientation is determined by the presence/absence of cholesterol when it is inserted in gel crystalline phase model membranes. When cholesterol (33%) is present in DPPC bilayers, filipin stands perpendicular to the membrane surface as expected in "pore-forming" models. At variance, absence of cholesterol leaves filipin in an essentially random organization in the lipidic matrix. In liquid crystalline phase bilayers (POPC) filipin's orientation is perpendicular to the membrane surface even in absence of cholesterol. Thus filipin's activity/organization depends not only on cholesterol presence but also in the lipid phase domain it is inserted in. These findings were combined with spectroscopy and microscopy data in the literature, solving controversial matters of debate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号