首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Pale yellow, needle‐shaped single crystals of Sm2[SeO3]3 were obtained by heating stoichiometric mixtures of Sm2O3 and SeO2 (molar ratio: 1:3) along with substantial amounts of CsCl as fluxing agent in evacuated sealed silica tubes at 830 °C for one week. According to X‐ray single‐crystal diffraction data, Sm2[SeO3]3 crystallizes triclinic (space group: ) with two formula units per unit cell of the dimensions a = 698.62(7), b = 789.71(8), c = 910.34(9) pm, α = 96.693(5), β = 104.639(5), γ = 115.867(5)°. Its crystal structure contains two crystallographically distinct Sm3+ cations in eight‐ and ninefold coordination with oxygen atoms arranged as distorted uncapped or capped square antiprisms (d(Sm3+?O2?) = 232?271 pm). These [(Sm1)O8] and [(Sm2)O9] polyhedra share opposite edges and faces to form zigzag chains along [100] with discrete pyramidal [SeO3]2? anions bridging units. Further linkage by [SeO3]2? anions in [010] direction leads to a three‐dimensional network, which exhibits almost rectangular channels along [111]. These tunnels offer width enough to incorporate the free non‐bonding electron pairs (?lone pairs”?) at the Se4+ cations, since all nine different Ψ1‐tetrahedral [SeO3]2? groups (d(Se4+?O2?) = 165?173 pm, ?(O–Se–O) = 94 – 108°) exhibit a pronounced stereochemical ?lone‐pair”? activity. For not being isotypic with neither triclinic Er2[SeO3]3 (CN(Er3+) = 7 and 8) nor the remainder rare‐earth metal(III) oxoselenates(IV) of the composition M2[SeO3]3 (≡ M2Se3O9; M = Sc, Y, La, Ce – Lu), Sm2[SeO3]3 claims a unique crystal structure among them.  相似文献   

2.
Single crystals of Pb3O2(SeO3) have been prepared hydrothermally at 230 °C. The structure (orthorhombic, Cmc21, a = 10.529(2), b = 10.722(2), c = 5.7527(12)Å, V = 649.5(2)Å3) has been solved by direct methods and refined to R1 = 0.059 on the basis of 615 unique observed reflections (|Fo| = 4σF). The structure is based upon double [O2Pb3]2+ chains of edge‐sharing [OPb4]6+ tetrahedra. These [O2Pb3]2+ chains run parallel to [001], and their planes are parallel to (010). The pyramidal (SeO3)2— anions are located between the chains; their triangular oxygen atom bases lie parallel to (001) and all (SeO3)2— groups are pointing in the same direction. A short compilation of [O2M3] chains of oxocentred M4 tetrahedra in minerals and inorganic compounds is provided.  相似文献   

3.
The crystal structures of Ce2[SeO3]3 and Pr2[SeO3]3 have been refined from X‐ray single‐crystal diffraction data. The compounds were obtained using stoichiometric mixtures of CeO2, SeO2, Ce, and CeCl3 (molar ratio 3:3:1:1) or Pr6O11, SeO2, Pr, and PrCl3 (molar ratio 3:27:1:2) heated in evacuated sealed silica tubes at 830 °C for one week. Ce2[SeO3]3 crystallizes orthorhombically (space group: Pnma), with four formula units per unit cell of the dimensions a = 839.23(5) pm, b = 1421.12(9) pm, and c = 704.58(4) pm. Its structure contains only a single crystallographically unique Ce3+ cation in tenfold coordination with oxygen atoms arranged as single‐face bicapped square antiprism and two different trigonal pyramidal [SeO3]2? groups. The connectivity among the [CeO10] polyhedra results in infinite sheets of face‐ and edge‐sharing units propagating normal to [001]. Pr2[SeO3]3 is monoclinic (space group: P21/n) with twelve formula units per unit cell of the dimensions a = 1683.76(9) pm, b = 705.38(4) pm, c = 2167.19(12) pm, and β = 102.063(7)°. Its structure exhibits six crystallographically distinct Pr3+ cations in nine‐ and tenfold coordination with oxygen atoms forming distorted capped square antiprisms or prisms (CN = 9), bicapped square antiprisms and tetracapped trigonal prisms (CN = 10), respectively. The [PrO9] and [PrO10] polyhedra form double layers parallel to (111) by edge‐ or face‐sharing, which are linked by nine different [SeO3]2? groups to build up a three‐dimensional framework. In both compounds, the discrete [SeO3]2? anions (d(Se4+–O2?) = 166–174 pm) show the typical Ψ1‐tetrahedral shape owing to the non‐bonding “lone‐pair” electrons at the central selenium(IV) particles. Moreover, their stereochemical “lone‐pair” activity seems to flock together in large empty channels running along [010] in the orthorhombic Ce2[SeO3]3 and along [101] in the monoclinic Pr2[SeO3]3 structure, respectively.  相似文献   

4.
CoSm(SeO3)2Cl, CuGd(SeO3)2Cl, MnSm(SeO3)2Cl, CuGd2(SeO3)4 and CuSm2(SeO3)4: Transition Metal containing Selenites of Samarium and Gadolinum The reaction of CoCl2, Sm2O3, and SeO2 in evacuated silica ampoules lead to blue single crystals of CoSm(SeO3)2Cl (triclinic, , Z = 4, a = 712.3(1), b = 889.5(2), c = 1216.2(2) pm, α = 72.25(1)°, β = 71.27(1)°, γ = 72.08(1)°, Rall = 0.0586). If MnCl2 is used in the reaction light pink single crystals of MnSm(SeO3)2Cl (triclinic, , Z = 2, a = 700.8(2), b = 724.1(2), c = 803.4(2) pm, α = 86.90(3)°, β = 71.57(3)°, γ = 64.33(3)°, Rall = 0.0875) are obtained. Green single crystals of CuGd2(SeO3)2Cl (triclinic, , Z = 4, a = 704.3(4), b = 909.6(4), c = 1201.0(7) pm, α = 70.84(4)°, β = 73.01(4)°, γ = 70.69(4)°, Rall = 0.0450) form analogously in the reaction of CuCl2 and Gd2O3 with SeO2. CoSm(SeO3)2Cl contains [CoO4Cl2] octahedra, which are connected via one edge and one vertex to infinite chains. The Mn2+ ions in MnSm(SeO3)2Cl are also octahedrally coordinated by four oxygen and two chlorine ligands. The linkage of the polyhedra to chains occurs exclusively via edges. Both, the cobalt and the manganese compound show the Sm3+ ions in eight and ninefold coordination of oxygen atoms and chloride ions. In CuGd(SeO3)2Cl the Cu2+ ions are coordinated by three oxygen atoms and one Cl ion in a distorted square planar manner. One further Cl and one further oxygen ligand complete the [CuO3Cl] units yielding significantly elongated octahedra. The latter are again connected to chains via two common edges. For the Gd3+ ions coordination numbers of ?8 + 1”? and nine were found. Single crystals of the deep blue selenites CuM2(SeO3)4 (M = Sm/Gd, monoclinic, P21/c, a = 1050.4(3)/1051.0(2), b = 696.6(2)/693.5(1), c = 822.5(2)/818.5(2) pm, β = 110.48(2)°/110.53(2)°, Rall = 0.0341/0.0531) can be obtained from reactions of the oxides Sm2O3 and Gd2O3, respectively, with CuO and SeO2. The crystal structure contains square planar [CuO4] groups and irregular [MO9] polyhedra.  相似文献   

5.
Preparation and Properties of the Alkali Hexaiodatogermanates(IV), M2[Ge(IO3)6] Germanium dioxide aquate and alkali nitrates react with iodic acid to yield alkali hexaiodatogermanates(IV), M2[Ge(IO3)6], (M = NH4, K, Rb, Cs). The unit-cell dimensions of the trigonal cell are for K2[Ge(JO3)6] a0 = 11.16 Å, c0 = 11.34 Å, z = 3. The compounds M[MIV(IO3)6] (MI = NH4, K, Rb, Cs, MIV = Ge, Sn, Pb, Ti, Zr, Mn) are isomorphous1).  相似文献   

6.
Inhaltsübersicht. Bei der Reaktion von tetragonalem Blei(II)-oxid in wäßriger Suspension mit Calciumchlorid oder mit Ammoniumchlorid lassen sich für molare Verhältnisse Cl/PbO bis zu 4/1 nur drei kristalline basische Blei(II)-chloride in der festen Phase mit den Pb/Cl-Verhältnissen von 3,5, 2,0 bzw. 1,0 nachweisen. Lead(II) Oxide and Hydroxide Chloride Abstract. In the reaction between tetragonal lead(II) oxide in aqueous suspension and calcium chloride, or ammonium chloride, and for molar ratios of Cl/PbO up to 4/1 only three kinds of crystalline basic lead chlorides are detectable in the solid phase with Pb/Cl ratios of 3.5, 2.0 and 1.0, respectively.  相似文献   

7.
Pr4(SeO3)2(SeO4)F6 and NaSm(SeO3)(SeO4): Selenite‐Selenates of Rare Earth Elements Light green single crystals of Pr4(SeO3)2(SeO4)F6 have been obtained from the decomposition of Pr2(SeO4)3 in the presence of LiF in a gold ampoule. The monoclinic compound (C2/c, Z = 4, a = 2230.5(3), b = 710.54(9), c = 835.6(1) pm, β = 98.05(2)°, Rall = 0.0341) contains two crystallographically different Pr3+ ions. Pr(1)3+ is attached by six fluoride ions and two chelating SeO32– groups (CN = 10), Pr(2)3+ is surrounded by four fluoride ions, three monodentate SeO32– and two SeO42– groups. One of the latter acts as a chelating ligand, so the CN of Pr(2)3+ is 10. The selenite ions are themselves coordinated by five and the selenate ions by four Pr3+ ions. The coordination number of the F ions is three and four, respectively. The linkage of the coordination polyhedra leads to cavities in the crystal structure which incorporate the lone pairs of the selenite ions. The reaction of Sm2(SeO4)3 and NaCl in gold ampoules yielded light yellow single crystals of NaSm(SeO3)(SeO4). The monoclinic compound (P21/c, Z = 4, a = 1066.9(2), b = 691.66(8), c = 825.88(9) pm, β = 91.00(2)°, Rall = 0.0530) contains tenfold oxygen coordinated Sm3+ ions. The oxygen atoms belong to five SeO32– and two SeO42– ions. Two of the SeO32– groups as well as one of the SeO42– groups act as a chelating ligand. The sodium ions are surrounded by five SeO42– ions and one SeO32– group. One of the selenate ions is attached chelating leading to a coordination number of seven. Each selenite group is coordinated by six (5 × Sm3+ and 1 × Na+), each selenate ion by seven cations (5 × Na+ and 2 × Sm3+).  相似文献   

8.
9.
The selenites, Na2Be3(SeO3)4 · H2O and Cs2[Mg(H2O)6]3(SeO3)4, were synthesized under hydrothermal conditions. The crystal structures of Na2Be3(SeO3)4 · H2O and Cs2[Mg(H2O)6]3(SeO3)4 were determined by single‐crystal X‐ray diffractions. Na2Be3(SeO3)4 · H2O crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a = 4.8493(9), b = 12.013(2), c = 12.077(2) Å, and Z = 2, whereas Cs2[Mg(H2O)6]3(SeO3)4 crystallizes in the monoclinic space group C2/m (no. 12) with lattice cell parameters a = 12.596(6), b = 7.297(4), c = 16.914(8) Å, and Z = 2. Na2Be3(SeO3)4 · H2O features a three‐dimensional open framework structure formed by BeO4 tetrahedra and SeO3 trigonal pyramids. Na cations and H2O molecules are located in different tunnels. Cs2[Mg(H2O)6]3(SeO3)4 has a structure composed of isolated [Mg(H2O)6] octahedra and SeO3 trigonal pyramids interacted by hydrogen bonds, and Cs cations are resided in‐between. Both compounds were characterized by thermogravimetric analysis and FT‐IR spectroscopy.  相似文献   

10.
It is a great challenge to develop UV nonlinear optical (NLO) material due to the demanding conditions of strong second harmonic generation (SHG) intensity and wide band gap. The first ultraviolet NLO selenite material, Y3F(SeO3)4, has been obtained by control of the fluorine content in a centrosymmetric CaYF(SeO3)2. The two new compounds represent similar 3D structures composed of 3D yttrium open frameworks strengthened by selenite groups. CaYF(SeO3)2 has a large birefringence (0.138@532 nm and 0.127@1064 nm) and a wide optical band gap (5.06 eV). The non-centrosymmetric Y3F(SeO3)4 can exhibit strong SHG intensity (5.5×KDP@1064 nm), wide band gap (5.03 eV), short UV cut-off edge (204 nm) and high thermal stability (690 °C). So, Y3F(SeO3)4 is a new UV NLO material with excellent comprehensive properties. Our work shows that it is an effective method to develop new UV NLO selenite material by fluorination control of the centrosymmetric compounds.  相似文献   

11.
Summary Single crystal X-ray data of the hydrothermally grown new phase Li2Cu3(SeO3)2(SeO4)2 were measured with a four-circle diffractometer up to sin /=0.81 Å–1 [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, = 94.21(1)°]. The structure was determined by direct and Fourier methods and refined toR=0.034,R w =0.027 for 2 086 independent reflections.Cu(1)[4+1]O5 forms a tetragonal pyramid, Cu(2)[4 + 2]O6 is a strongly elongated octahedron. The Li atom is surrounded by four O atoms forming a distorted tetrahedron. Se(IV)O3 and Se(VI)O4 groups are in accordance to literature, mean Se-O bond lengths are 1.714 and 1.644 Å.
Die Kristallstruktur von Li2Cu3(SeO3)2(SeO4)2
Zusammenfassung Einkristall-Röntgendaten der hydrothermal gezüchteten neuen Phase Li2Cu3(SeO3)2(SeO4)2 wurden mit einem Vierkreisdiffraktometer im Bereich bis zu sin /=0.81 Å–1 gemessen [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, =94.21(1)°]. Die Kristallstruktur wurde mittels direkter und Fourier-Methoden bestimmt und für 2 086 unabhängige Reflexe zuR=0.034,R w =0.027 verfeinert.Cu(1)[4+1]O5 bildet eine tetragonale Pyramide, Cu(2)[4+2]O6 ist ein stark verlängertes Oktaeder. Das Li-Atom ist von vier O-Atomen in Gestalt eines verzerrten Tetraeders umgeben. Die Se(IV)O3-und Se(VI)O4-Gruppen entsprechen der Literatur, die mittleren Se-O-Abstände betragen 1.714 und 1.644 Å.
  相似文献   

12.
LuF[SeO3] and LuCl[SeO3]: Two Non‐Isotypic Halide Oxoselenates(IV) of Lutetium Despite the formal similarity of LuF[SeO3] and LuCl[SeO3] both compounds show significant structural differences due to the different positions of the halide anions (X) within the pentagonal bipyramids [LuO5X2]9−. However, both oxoselenates(IV) have these pentagonal bipyramids as basic modules in common that are connected via O2− edges to chains. LuCl[SeO3] crystallizes orthorhombically in space group Pnma (no. 62; a = 714.63(7), b = 681.76(7) and c = 864.05(9) pm; Z = 4). The structure is isotypic to that one recently presented for ErCl[SeO3]. With a single Cl anion in each an apical and an equatorial position, the chains have to be inclined with an angle of about 54° relative to each other to get connected alternately by common Cl corners and bridging [SeO3]2− pyramids. In contrast to that, LuF[SeO3] which crystallizes triclinically in space group (no. 2; a = 644.85(6), b = 684.41(7), c = 427.98(4) pm, α = 94.063(5), β = 96.484(5) and γ = 91.895(5)°; Z = 2) takes a structural motif already known from CsTmCl2[SeO3]. Owing to the apical position of both halide anions it is now possible to connect the chains directly via discrete Ψ1‐tetrahedral [SeO3]2− groups to layers. The same layers are present in LuF[SeO3] and without the formal alkali‐metal halide unit (CsCl) of the CsTmCl2[SeO3]‐type compounds, the layers can also be connected directly by common F corners to a three‐dimensional array. Torch‐sealed evacuated silica ampoules were used for the synthesis of both lutetium(III) halide oxoselenates(IV). For LuF[SeO3] these vessels have been graphitized before to prevent them from oxosilicate‐producing side‐reactions with the applied fluoride. The synthesis of LuCl[SeO3] required Lu2O3 and SeO2 in a molar ratio of 1 : 6 with a surplus of an eutectic RbCl/LiCl mixture as fluxing agent and an annealing period of five weeks at a temperature of 500 °C, whereas Lu2O3, LuF3 and SeO2 (in a molar ratio of 1 : 1 : 3) with CsBr as flux were converted to LuF[SeO3] at 750 °C within six days.  相似文献   

13.
Hydro­thermally prepared La2(SeO3)3 contains a three‐dimensional network of LaO10 polyhedra [dav(La—O) = 2.622 (3) Å] and SeO3 pyramids [dav(Se—O) = 1.691 (3) Å]. One of the SeO3 pyramids is in a general position and the other has crystallographic m symmetry. There are pseudo‐channels in the [010] direction which are probably associated with the SeIV lone pairs.  相似文献   

14.
Crystals of PbCu3(OH)(NO3)(SeO3)3·1/2H2O [a=7.761(3)Å,b=9.478(4)Å,c=9.514(4)Å, =66.94(2)°, =69.83(2)°, =81.83(2)°, space group P ,Z=2] and Pb2Cu3O2(NO3)2(SeO3)2 [a=5.884(2)Å,b=12.186(3)Å,c=19.371(4)Å, space group Cmc21,Z=4] were synthesized under hydrothermal conditions. Their crystal structures were refined with three-dimensional X-ray data toR w=0.033 resp. 0.055. In PbCu3(OH)(NO3)(SeO3)3·1/2H2O the Cu atoms are [4+1] and [4+2] coordinated and via SeO3 groups a three-dimensional atomic arrangement is built up. In Pb2Cu3O2(NO3)2(SeO3)2 there are sheets, which are connected only via Pb-O bonds ranging from 2.98 Å to 3.16 Å.
  相似文献   

15.
Bromoplumbates with One‐dimensional Polymeric and Isolated Anions: (Bzl4P)2[Pb3Br8], (Bzl4P)2[Pb3Br8(dmf)2], (Bzl4P)[PbBr3], (Bzl4P)2[PbBr4], and (Bzl4P)4[Pb2Br6][PbBr4] PbBr2 reacts with LiBr and (Bzl4P)(PF6) (Bzl = CH2C6H5) in acetone to form a series of bromoplumbate complexes with compositions and structures depending on the conditions of reaction and crystallization. While the anions in (Bzl4P)2[Pb3Br8] ( 1 ) and (Bzl4P)[PbBr3] ( 2 ) are one‐dimensional polymers with penta‐ and hexacoordinated Pb atoms, the metal atoms in the mono‐ and dinuclear complex anions of (Bzl4P)2[PbBr4] · 2acetone ( 3 · 2acetone) and (Bzl4P)4[Pb2Br6][PbBr4] ( 4 ) bind to four bromo ligands. From DMF as a solvent (Bzl4P)2[Pb3Br8(dmf)2] ( 1 b ) crystallizes with the same bromoplumbate structure as in 1 a , but with dmf ligands occupying the coordination sites vacant in 1 a . Upon radiation of compound 3 with ultraviolet light greenish yellow photoluminescence (emssion maximum at 547 nm) is observed. Crystallographic details see “Inhaltsübersicht”.  相似文献   

16.
Lead(IV) acetate reacts with aqueous arsenic acid to yield lead(IV) arsenates, the state of which depends on the conditions of precipitation. At room temperature amorphous precipitates or gelatinous masses are obtained. Also clear solutions are obtained, which need sometime to become gelatinous. At 90°C colourless crystalline lead(IV) hydrogenarsenate-monohydrate, Pb(HAsO4)2 · H3O, is obtained, isotypic with lead(IV) hyrdrogen-phosphate-monohydrate.  相似文献   

17.
Polyol Metal Complexes. XIII. Na2[Be(C4H6O3)2] · 5H2O and Na2[Pb(C4H6O3)2] · 3H2O – Two Homoleptic Bis Polyolato Metallates with Beryllium and with Lead Na2[Be(C4H6O3)2] · 5H2O ( 1 ) and Na2[Pb(C4H6O3)2] · 3H2O ( 2 ) crystallize from concentrated, alkaline aqueous solutions. The polyol anhydroerythritol is deprotonated twice in the mononuclear, homoleptic complex anions. The preference of beryllium for the binding of cis-furanoid diols is shown. In 2 , a stereochemically active lone pair at the central atom is the reason for the construction of low dimensional aggregates from three plumbate and three sodium ions.  相似文献   

18.
Sodium magnesium selenite NaMg2(OH)(SeO3)2 and rubidium zinc selenite RbZn2(OH)(SeO3)2 were prepared by hydrothermal reactions. The crystal structures of the title compounds were determined by single‐crystal X‐ray diffraction. NaMg2(OH)(SeO3)2 crystallizes in the orthorhombic space group Pnma (no. 62) with lattice parameters a = 13.1919(10), b = 6.0415(4), c = 8.2182(6) Å, and Z = 4 and RbZn2(OH)(SeO3)2 crystallizes in the triclinic space group P$\bar{1}$ (no. 2) with lattice parameters a = 4.8698(5), b = 7.3446(8), c = 11.7796(12) Å, α = 82.554(3), β = 78.456(2), γ = 71.603(3)°,and Z = 2. The structure of NaMg2(OH)(SeO3)2 is a three‐dimensional framework consisting of edge‐sharing MgO6 octahedra and trigonal pyramidal SeO32– groups, whereas the structure of RbZn2(OH)(SeO3)2 is a two‐dimensional layers structure consisting of corner‐sharing [Zn2O7] dimers linked by trigonal pyramidal SeO32– groups. The compounds were characterized by the solid state UV/Vis/NIR diffuse reflectance, and FT‐IR spectroscopy.  相似文献   

19.
Crystals of Pb2(NO2)(NO3)(SeO3) were synthesized by partial reduction of nitrate ions with native copper under hydrothermal conditions. The crystal structure [a=5.529 (2) Å,b=10.357 (3) Å,c=6.811 (2) Å, space group Pmn21,Z=2] was determined from 1 707 independent X-ray data up to sin /=0.81 Å–1 and was refined toR w =0.028. The Pb(1) atom is ten coordinated to O atoms [Pb(1)-O from 2.51 Å to 2.96 Å], the Pb(2) atom has three nearest O atoms [Pb(2)-O=2.41 Å (1 ×) and 2.45 Å (2 ×)] and six next-nearest O atoms [Pb(2)-O from 2.80 Å to 3.22 Å].
Herrn Prof. Dr.K. Komarek zum 60. Geburtstag gewidmet.  相似文献   

20.
Inhaltsübersicht. Die Titelverbindung entsteht neben CuN3 · PPh3 bei der Einwirkung von Natriumazid auf CuCl2 und Triphenylphosphan in siedendem Acetonitril bei Anwesenheit von 15-Krone-5 als Lösungsvermittler für NaN3. (Ph3PNPPh3)2[Cu(N3)4] bildet schwarze Kristalle, die wir durch das IR-Spektrum und durch eine röntgenographische Strukturanalyse charakterisiert haben. Raumgruppe Pbca, Z = 4, (4245 beobachtete unabhängige Reflexe, R = 7,2%), Gitter-abmessungen (20°C):a = 1980, 1;b = 1618,8; c = 2014,3 pm. Die Verbindung besteht aus Kationen [Ph3PNPPh3]+ und Anionen [Cu(N3)4]2– der Symmetrie Ci, in denen das Cu-Atom planar von den α-N-Atomen der Azidgruppen mit Cu–N-Abständen von 197,2(4) und 189,5(4) pm umgeben ist. Synthesis and Crystal Structure of (Ph3PNPPh3)2[Cu(N3)4] The title compound is prepared besides CuN3 · PPh3 by the reaction of sodium azide with CuCl2 and PPh3 in boiling acetonitrile in the presence of 15-crown-5. (Ph3PNPPh3)2[Cu(N3)4] forms black crystals, which have been characterized by their IR spectrum as well as by an X-ray structure determination. Space group Pbca, Z = 4 (4245 observed independent reflexions, R = 0.072), lattice dimensions (20°C): A = 1980.1; b = 1618.8; c = 2014.3 pm. The compound consists of Ph3PNPPh3+ cations and anions [Cu(N3)4]2– with symmetry C1, in which the copper atom is planarly surrounded by the four nitrogen atoms of the azide groups with bond lengths Cu–N of 197.2(4) and 189.5(4) pm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号