首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and Crystal Structure of the Adducts [DB-18C6] · CH3CN · CH3CSOH and [DC-18C6](CH3CSOH)2 as well as of the Salt-like Compounds [Cs(B-15C5)2]CH3CSS and [Cs(DB-18C6)]2S5(DMF)21) The reaction products of crown ethers, cesium, and sulfur in aprotic solvents like acetonitrile and dimethylformamide strongly depend on the reaction conditions. Using CH3CN as a solvent, sometimes neutral host-guest adducts crystallize only, e.g., [dibenzo-18C6] · CH3CN · CH3CSOH (monoclinic, S. G. P21/c, Z = 4, a = 9.73(1) Å, b = 22.03(1) Å, c = 11.86(1) Å, β = 91.8(1)°) or [dicyclohexyl-18C6](CH3CSOH)2 (monoclinic, S. G. P21/n, Z = 2, a = 7.75(1) Å, b = 10.32(1) Å, c = 17.73(1) Å, β = 95.7(1)°). The monothioacetic acid, CH3CSOH, must be regarded as the first product of the hydrolysis of CH3CN. Furthermore, another product of this kind of hydrolysis, CH3CSSH, is obtained too. Therefore, we also obtain the salt-like compound [Cs(benzo-15C5)2]CH3CSS (monoclinic, S. G. C2/c, Z = 4, a = 16.05(1) Å, b = 16.73(1) Å, c = 13.11(1) Å, β = 106.3(1)°). If the solvent DMF is used, the pentasulfide [Cs(dibenzo-18C6)]2S5(DMF)2 crystallizes (monoclinic, S. G. P21/n, Z = 4, a = 14.79(1) Å, b = 14.24(1) Å, c = 25.74(1) Å, β = 92.7(1°. The S52? anions show the cis-conformation.  相似文献   

2.
X-Ray Structural Analyses of Cyclododecasulfur (S12) and Cyclododecasulfur-1-Carbon-disulfide (S12 · CS2) S12 · CS2 crystallizes in space group R&3macr;m–D with hexagonal lattice constants a = 1066.8(3), c = 1155.1(4) pm, Z = 3, dcalc. = 2.04 g · cm?3. The S12 molecules occupy sites of D3d symmetry with bond distance (dss) of 205.4(1) pm, bond angles (α) of 105.80(5) and 106.65(6)º and torsional angle (τ) of 87.20(7)º. The CS2 molecule interacts only very weakly with the S12 units. S12 crystallizes in space group Pnnm–D with lattice constants a = 472.5(2), b = 910.4(3), c = 1453.2(3) pm, Z = 2, dcalc = 2.045 g · cm?3. The molecules with mean parameters d = 205.2 pm, α 106.6º, τ 88.0º occupy sites of C2h symmetry.  相似文献   

3.
Contributions to the Chemistry of Phosphorus. 66. Crystal and Molecular Structure of 1,2,3,4-Tetraphenyl-cyclo-5-carba-1,2,3,4-tetraphosphane, (PC6H5)4CH2, and 1,4-Dithio-1,2,3,4-tetraphenyl-cyclo-5-carba-1,2,3,4-tetraphosphane, (PC6H5)4CH2S2 The following results were achieved by X-ray structure analyses of 1,2,3,4-Tetraphenyl-cyclo-5-carba-1,2,3,4-tetraphosphane 1 and 1,4-Dithio-1,2,3,4-tetraphenyl-cyclo-5-carba-1,2,3,4-tetraphosphane 2 :
  • crystallises in the monoclinic space group Cc with a = 22.272, b = 13.726, c = 7.492 Å, β = 96.82° and Z = 4. The P4C-ring has an envelope conformation. The phenyl groups are arranged alternately on both sides of the ring.
  • forms triclinic crystals, space group P1 , with a = 10.900, b = 10.663, c = 12.233 Å, α = 106.26, β = 100.04, γ = 70.65°, Z = 2. The P4C-ring has twist conformation, the carbon atom lies almost in the mean plane of the ring. The sulfur atoms are bonded in exo position to the phosphorus atoms neighbouring the carbon atom and in trans position to each other.
  相似文献   

4.
Two crystal modifications, I and II, of the ZnPhen(S2CNEt2)2 complex have been isolated. According to XRD data, the single crystals of I are triclinic with a=9.745(2), b=10.252(2), c=14.331(3) Å, α=99.18(2), β=91.01(2), γ=113.28(2)°, V=1293.2(4) Å3, space group P1, Z=2, dcalc=1.401 g/cm3. The crystals of II are monoclinic with a=7.220(6), b=18.095(2), c=19.050(4) Å, β=95.85(2)°, V=2475.8(7) Å3, space group C2/c, Z=4, dcalc=1.461 g/cm3. In both modifications, the structure is formed by monomer molecules with a distorted octahedral environment of the zinc atom. All atoms in I are in the general position; in II, the atoms are linked by the twofold rotation axis. It is shown by X-ray phase analysis (XRPA) that the MnPhen(S2CNEt2)2 complexes (III) are isostructural to modification I of the ZnPhen(S2CNEt2)2 complex, which underlies the synthesis of a solid solution of these complexes, MnZn2Phen3(S2CNEt2)6 (phase IV). It is found that MPhen(S2CNEt2)2 (M=Zn2+, Mn2+) and phase IV quantitatively sublime when heated in vacuum. Thermolysis of III in argon yields manganese(II) sulfide of cubic modification; the main product of thermolysis of phase IV is a solid solution of ZnxMn1?xS of hexagonal modification.  相似文献   

5.
Metal Sulfur Nitrogen Compounds 18. Reaction Products of S7NH with Nickel and Copper Salts. Preparation and Structures of the Complexes [Ch34N][Ni(S3N)(CN)2], [(C6H5)4As][Cu(S3N)2], and [(C6H5)4AS][Cu(S3N)Cl]. In the presence of MOH (M = K, [(CH3)4N]), S7NH reacts with Ni(CN)2 to yield, besides the three-nuclear complex M[(S3NNi)3S2], the new mononuclear complex M[Ni(S3N)(CN)2]. The [(CH3)4N]+ salt is monoclinic, C2/m, a = 19.303(9), b =6.941(3), c=16.309(10) Å, β = 144.510(2), Z = 4. The [Ni(S3N)(CN)2]- anion is planar, Ni being coordinated by one S3N? chelate ligand and by two CN? ions. From the reaction of CuCI2, S7NH, and [Ph4As]OH result the salts [Ph4As][Cu(S3N)2] or [Ph4As][Cu(S3N)Cl], depending on the reaction conditions. [Ph4As][Cu(S3N)2] is triclinic, P&1macr;, a = 7.073(3), b = 11.742(4), c = 16.439(6) Å α = 91.08°(3), β = 99.01°(3), γ = 91.58°(3), Z = 2. Two S3N? chelate ligands coordinate to CuI in a distorted tetrahedral arrangement. [Ph4As][Cu(S3N)Cl] is monoclinic, C2/c, a = 17.174(6), b = 13.650(5), c = 21.783(5) Å β = 100.45°(2), Z = 8. CuI is coordinated by one S3N? chelate ligand and one C1?, resulting in a trigonal planar environment.  相似文献   

6.
New Benzyl Complexes of the Lanthanides. Synthesis and Crystal Structures of [(C5Me5)2Y(CH2C6H5)(thf)], [(C5Me5)2Sm(CH2C6H5)2K(thf)2], and [(C5Me5)Gd(CH2C6H5)2(thf)] YBr3 reacts with potassium benzyl and [K(C5Me5)] in THF to give KBr and the monobenzyl compound [(C5Me5)2 · Y(CH2C6H5)(thf)] 1 . The analogous reaction with SmBr3 in THF leads to the polymeric product [(C5Me5)2Sm(CH2C6H5)2 ∞ K(thf)2] 2 , with GdBr3 to [(C5Me5)Gd(CH2C6H5)2(thf)] 3 . The structures of 1–3 were determined by X-ray single crystal structure analysis:
  • Space group P1 , Z = 2, a = 851.2(4) pm, b = 952.7(4) pm, c = 1858.6(8) pm, α = 79.90(4)°, β = 77.35(4)°, γ = 73.30(3)°.
  • Space group P1 , Z = 2, a = 903.3(2) pm, b = 1375.9(3) pm, c = 1801.1(4) pm, α = 100.92(3)°, β = 100.77°, γ = 98.25(3)°.
  • Space group P21/n, Z = 8, a = 1458.2(5) pm, b = 927.8(3) pm, c = 3792.9(15) pm, β = 96.83(3)°.
  相似文献   

7.
Preparation, Spectroscopic Characterization, and Crystal Structures of [(C5H5N)2CH2][PtCl5(SCN)] and cis -[(C5H5N)2CH2][PtCl4(SCN)2] By treatment of [PtCl6]2– with SCN in aqueous solution a mixture of chlorothiocyanatoplatinates(IV) is formed, from which [PtCl5(SCN)]2– and cis-[PtCl4(SCN)2]2– have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X-Ray structure determinations on single crystals of [(C5H5N)2CH2][PtCl5(SCN)] ( 1 ) (tetragonal, space group P 43, a = 7.687(1), c = 29.698(4), Z = 4) and cis-[(C5H5N)2CH2][PtCl4(SCN)2] ( 2 ) (monoclinic, space group P 21/n, a = 11.2467(9), b = 15.0445(10), c = 11.3179(13), β = 92.840(9)°, Z = 4) show, that the thiocyanate groups are coordinated via S atoms with average Pt–S distances of 2.339 Å and Pt–S–C angles of 104.7° up to 107.1°. Using the molecular parameters of the X-ray determinations the low temperature (10 K) IR and Raman spectra have been assigned by normal coordinate analyses. The valence force constants of the S–Pt–Cl˙ axes are fd(PtS) = 1.81 ( 1 ) and 1.87 ( 2 ), fd(PtCl × ) = 1.77 ( 1 ) and 1.81 ( 2 ), of the Cl–Pt–Cl axes are fd(PtCl) = 1.93 ( 1 ) and 1.90 mdyn/Å ( 2 ). The 195Pt NMR spectra from dichlormethane solutions exhibit each one sharp signal at 3975.6 ( 1 ) and 3231.6 ppm ( 2 ), respectively.  相似文献   

8.
Synthesis and structure of a novel thermochromic complex (CH8N4)2[CuCl6] are reported. X-ray analysis of the compound was carried out for a single crystal 0.4×0.2×0.05 mm in size (a bright-yellow plate). The monoclinic unit cell parameters are a=7.167(1), b=15.561(3), c=7.328(1) Å, β=118.73(3)°, V=716.7(2) Å3, space group P21, Z=2 (CH8N4)2[CuCl6] dcalc=1.99 g/cm3, μ(MoKα)=2.65 mm?1, R=0.0264, and Rw=0.0290 for 1411 Ihkl>2σI.  相似文献   

9.
The crystal and molecular structures have been determined by single-crystal X-ray methods for the binuclear metal ions (II) complexes of 7-azaindole (1H-pyrrolo [2,3-b] pyridine, C7H6N2 denoted by HL), Cu2(CH3CO2)2.·L2(HL)2 and Ni2L4.2DMF. The dark green crystal of Cu2(CH3CO2)2L2(HL)2 was found to crystallize in the monoclinic space group P 21/n with a = 9.566(2), b = 12.752(2), c = 12.852(4) Å, β = 99.23(3)0, V = 1547 Å, Z = 2, the final R = 0.062 and Rw = 0.053 for 1488 observations from 2722 unique reflections. The Cu-Cu distance is 2.747(2), Cu-N (L?, bridge) is 1.966(7), Cu-N (HL, axial) is 2.229(8), and Cu-O is 2.031(6)Å. The red crystal of Ni2L4.2DMF was was found to crystallize in the triclinic space group \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm P \bar 1} $$\end{document} with a = 8.907(5), b = 9.462(2), c = 10.217(2) Å, α = 90.48(2), β = 91.09(3), γ = 110.69(3)0, V =805 Å3, Z = 1, the final R = 0.063 and Rw = 0.069 for 1489 observations from 2834 unique reflections. The Ni-Ni distance is 2.594(2), Ni-N is 1.905(7) Å. These two molecules lie on crystllographic inversion centers and exhibit ligand disorder.  相似文献   

10.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

11.
Metal Sulfur Nitrogen Compounds. 20. Reaction Products of PdCl2 and Pd(CN)2 with S7NH. Preparation and Structure of the Complexes [Ph6P2N][Pd(S3N)(S5)] and X[Pd(S3N)(CN)2] X = [Me4N]+, [Ph4P]+ With PdCl2 and [Ph6P2N]OH S7NH forms the complex salt [Ph6P2N][Pd(S3N)(S5)], which could be isolated in two modifications (α- and β-form). The α-form is triclinic, a = 9.347(4), b = 14.410(8), c = 15.440(11) Å, α = 76.27°(5), β = 77.06°(4), γ = 76.61α(4), Z = 2, space group P1 . The β-form is orthorhombic, a = 9.333(2), b = 17.659(4), c = 23.950(6) Å, Z = 4. The structure of the metal complex is the same in the two modifications. One S3N? and one S52? are coordinate as chelate ligands to Pd. From S7NH, Pd(CN)2, and XOH X = [(CH3)4N]+ and [(C6H5)4P]+ the salts X[Pd(S3N)(CN)2] were formed. The (CH3)4N-salt is isomorphous with the analogous Ni compound described earlier, the (C6H5)4P-salt is triclinic, a = 9.372(4), b = 10.202(5), c = 13.638(6) Å, α = 86.36α(4), β = 85.66°(4), γ = 88.71°(4), Z = 2, space group P1 . One S3N? chelate ligand and two CN? ions are bound to Pd. In all these complexes the coordination of Pd is nearly square planar.  相似文献   

12.
Bipy, Phen, and P(C6H4CH2NMe2‐2)3 in the Synthesis of Cationic Silver(I) Complexes; the Solid‐State Structures of [P(C6H4CH2NMe2‐2)3]AgOTf and [Ag(phen)2]OTf The reaction of [P(C6H4CH2NMe2‐2)3]AgX ( 1a , X = OTf; 1b , X = OClO3) with equimolar amounts of LcapL ( 2a , LcapL = 2, 2′‐bipyridine, bipy; 2b , LcapL = 4, 4′‐dimethyl‐2, 2′‐bipyridine, bipy′; 2c , LcapL = 1, 10‐phenanthroline, phen) leads to the formation of the cationic complexes {[P(C6H4CH2NMe2‐2)3]Ag(LcapL)}+X (LcapL = bipy: 3a , X = OTf; 3b , X = ClO4; LcapL = bipy′: 3c , X = OTf; 3d , X = ClO4; LcapL = phen: 3e , X = OTf; 3f , X = ClO4) in which the building blocks LcapL and P(C6H4CH2NMe2‐2)3 act as bidentate chelating ligands and are datively‐bound to the silver atom. Spectroscopic studies reveal that on the NMR time‐scale the phosphane group is dynamic with exchanging the respective Me2NCH2 built‐in arms. While complex 3e is stable in the solid‐state, it appeared that solutions of 3e start to decompose upon precipitation of colloidal silver when they are heated or irradiated with light, respectively. Appropriate work‐up of the reaction mixture allows the isolation of the phosphane P(C6H4CH2NMe2‐2)3 ( 5 ) along with [Ag(phen)2]OTf ( 4 ). The solid‐state structures of neutral 1a and cationic 4 are reported. Mononuclear 1a crystallizes in the monoclinic space group P21/c with the cell parameters a = 16.7763(2), b = 14.7892(2), c = 25.44130(10)Å, β = 106.1260(10), V = 6063.83(11)Å3 and Z = 4 with 8132 observed unique reflections (R1 = 0.0712), while 4 crystallizes in the monoclinic space group C2/c with the cell parameters a = 26.749(3), b = 7.1550(10), c = 26.077(3)Å, β = 113.503(2), V = 4576.8(10)Å3 and Z = 4 with 6209 observed unique reflections (R1 = 0.0481). The unit cell of 1a consists of two independent molecules. In both molecules the silver atom possesses a distorted tetrahedral coordination sphere and a boat‐like conformation for the six‐membered AgPNCH2C2/phenyl cycles is found. In 4 , as typical for 1a , the silver atom possesses the coordination number 4. The two phen ligands are tilted by 40.63°. The OTf group is acting as non‐coordinating counter ion.  相似文献   

13.
Crystal structures of Cs4[Re6Te8(CN)6]·2H2O (1) and Ba2[Re6Te8(CN)6]· 12H2O (2) are determined. Crystals 1 are orthorhombic, a = 14,282(1), b = 12.910(1), c = 18.040(1) Å, Vcell = 3326.3(8) Å3, space group Pbcn, Z = 4, dcalc = 5.715 g/cm3, R(F) = 0.0482 for 3193 Fhkl > 4σ(F). Crystals 2 are triclinic, a = 9.671(3), b = 9.697(4), c = 11.039(4) Å, α = 89.86(3), β = 72.34(3), γ = 82.46(3)°, Vcell = 977.2(6) Å3, space group P1, Z = 1, dcalc = 4.733 g/cm3, R(F) = 0.0490 for 3226 Fhkl > 4σ(F). In both structures, the [Re6Te8(CN)6]4? anions form a distorted primitive cubic packing with distances between the centers 9.02-9.63 Å in 1 and 9.70-11.04 Å in 2. The Cs+ cations in 1 lie near the face centers of the cubes formed by the onions. In 2, cation pairs (Ba2+)2 bonded to two solvate water molecules are formed; the pairs lie at the centers of the anion cubes. In structures 1 and 2, there are shortened contacts between the tellurium atoms belonging to the neighboring anions (3.75-4.09 and 3.95-4.22 Å, respectively).  相似文献   

14.
《Solid State Sciences》1999,1(6):321-329
Chemical preparation, crystal structure and infrared absorption spectra are given for a new organic cation dihydrogendiphosphate. The new synthesized compound [C6H5(CH2)2NH3]2H2P2O7; crystallized in the monoclinic system (P21/c space group) with Z = 4 and with the following unit-cell dimensions: a = 19.006(3); b = 10.718(2), c = 10.996(3) Å and β = 98.99(2) °. Its crystal structure was determined and refined down to R = 0,056 by using 3278 independent reflections. As in all atomic arrangements including acidic diphosphate groups; we can observe the formation of an infinite network of anions connected by strong H-bonds.  相似文献   

15.
S4N4 and its Derivatives: [Cu(CH3CN)CL2]2S2N2, a Transition Metal Complex with the S2N2 Ligand S4N4 reacts with CuCl2 · 2H2O in acetonitrile to give among other products the polymer copper(II) complex [Cu(CH3CN)Cl2]2S2N2, This complex crystallizes in the space group P21/c with a = 9.635(4), b = 7.270(4), c = 10.009(6) Å, β = 93.16(6)°, and Z = 2. An X-ray structure analysis (R = 0,065) shows the crystal to.contain parallel chains with copper atoms bridged by Cl and S2N2 bridges. The coordination of the Cu atom is square pyramidal. The S2N2 ring is planar. The SN bond distances are 1.633 and 1.641 Å.  相似文献   

16.
The crystal structures and absolute configurations of (η5-C5H5)-CoI(NC4H3-C(R)=N(S)-CH(CH3)(C6H5)) (R = H, compound I; R = CH3, compound II) have been determined by single crystal X-ray diffraction. Crystals of compound I are orthorhombic, with a 11.084(6), b 12.107(6) and c 13.121(7) Å, space group P212121 and d (calcd, Z = 4) 1.69 g cm?3 The structure was solved by the Patterson technique and refined with use of full matrix least-squares methods to R(F) = 0.031 and Rw(F) = 0.028. Compound II is nearly isomorphous and isostructural; a 11.246(6), b 11.923(6) and c 13.370(7) Å, d(calc., Z = 4) 1.71 g cm?3 and was refined to the final agreement factors of R(F) = 0.044 and Rw(F) = 0.035. The Co atom has a distorted tetrahedral coordination, with Co-I 2.595(2) for I and 2.607(2) Å for II; Co-(η5-C5H5 ring centroid) 1.681(4) and 1.703(5) Å; Co-N(pyrrole) 1.905(9) and 1.885(9) Å; Co-N(imine) 1.971(8) and 2.003(9) Å, all the parameters being well within values found in the literature. The configuration around the chiral carbon of the phenylethylamine is S for both compounds, whereas the configuration around the metal is R in I and S in II. The different metal configurations in I and II have their origin in the two different substituents (R = H, CH3) at the imine carbon atoms of the chelate ring, which induce completely different conformations of the (S)-CH(CH3)(C6H5) moiety in the two complexes. For both compounds the thermodynamically less stable isomer is enriched upon crystallization. Also, for compound I the solution and solid state conformations are almost opposite to each other, the conformation in the solid reflecting intramolecular interactions (phenyl/C5H5 attraction).  相似文献   

17.
1,3-Cyclooctadiene reacts with trimethylaluminum and potassium according to the equation 4K + 4Al(CH3)3 + 2C8H12
3K[Al(CH3)4]+K[(C8H12)2Al] to give potassium bis(3,8-cis-cyclooctenyl) aluminate. The compound can be described as a bicyclo derivative of cyclooctene formed by the 1,4 addition to 1,3-cyclooctadiene. The structure of the complex was determined from 4500 unique data measured by single crystal X-ray diffractometer techniques. Full matrix least squares refinement gave final agreement factors of R1 = 0.043 (observed data) and R2 = 0.045 (all data) in the monoclinic space group P21/c (a = 9.658(6), b = 12.220(8) and c = 14.150(9)Å; β = 113.85(1)°; V = 1527.43 Å; Z = 4 for ?calc = 1.23 g cm?3).  相似文献   

18.
Halomercurates: Syntheses and Crystal Structures of [Cu(en)2][Hg2Cl6], [Cu(en)2][Hg2Br6], and [Cu(en)2][HgBr4] Crystals of [Cu(en)2][Hg2Cl6] ( 1 ) have been obtained by layering a solution of Hg(NO3)2 and NaCl with a solution of [Cu(en)2]SO4. An analogous procedure, using NaBr instead of NaCl, gave crystals of [Cu(en)2][HgBr4] ( 3 ). Crystals of [Cu(en)2][Hg2Br6] ( 2 ) were obtained by gel crystallization using the same starting materials as for 3 . The complexes show very low solubility. The dinuclear anions of 1 consist of two nearly planar HgCl3 units related by a center of symmetry. In 2 infinite anionic chains are present, made up of parallel HgBr3 units. These units are packed in such a way as to produce a trigonal bipyramidal configuration around the Hg atoms. 3 contains mononuclear deformed tetrahedral [HgBr4]2– anions. In all three complexes the packing of the ions is such that halogen atoms of halomercurate anions complete a tetragonal bipyramidal coordination at Cu. The resulting Cu–Halogen distances are 2.924 Å for 1 , 3.036 Å for 2 and 3.085 and 3.119 Å for 3 . 1 : Space group P 1, Z = 1, lattice constants at 20 °C: a = 7.000(2), b = 7.526(2), c = 8.239(2) Å; α = 88.39(2), β = 86.06(2), γ = 86.10(3)°; R1 = 0.040. 2 : Space group P21/c, Z = 2, lattice constants at –50 °C: a = 7.185(1), b = 16.338(2), c = 7.814(1) Å; β = 94.88(2)°; R1 = 0.033. 3 : Space group P21/n, Z = 4, lattice constants at 20 °C: a = 8.055(3), b = 13.101(3), c = 13.814(3) Å; β = 91.24(3)°; R1 = 0.092.  相似文献   

19.
Crystal structures of (Et4N)2[Mo3S7Br6] (I) and (Et4N)(H9O4)[Mo3S7Cl6] (II) clusters belonging to the class of Mo3S 7 4+ were determined by X-ray diffraction analysis. Crystals I are orthorhombic a=19.106(3), b=12.930(2), c=29.887(5) Å, V=7383(2) Å3, space group Pbca, Z=8, dcalc=2.253 g/cm3, R(F)=0.0402, wR(F2)=0.0587 for 2493 Fhkl>4σ. Crystals II are monoclinic, a=17.106(3), b=18.882(4), c=11.006(2), Å, β=126.13(3)°, V=2871.2(9) Å3, space group Cc, Z=4, dcalc=2.147 g/cm3, R(F)=0.0181, wR(F2)=0.0445 for 2307 Fhkl>4σ. Structure I has an anion dimer with 3Sax…Cl=3.258(4)–3.404(4) Å; the dimer is similar to that observed in the structures of A2[M3X7Hal6], A=Ph4P+, Ph3EtP+, and PPN+. In structure II, infinite chains of anions bonded by 3Sax…Cl contacts of 3.183(3)–3.394(3) Å were found. A similar phenomenon was established earlier for the structure of (Et4N)(H9O4)[Mo3S7Br6] (III), which is not isostructural to II. Compounds II and III also differ in the structure of the H9O4 + cation: infinite helix in II and pyramid in III.  相似文献   

20.
The crystal and molecular structure of Ti(n5-C5H4CH3)2S5has been determined by X-ray diffraction studies. The substance crystallizes in the monoclinic crystal system [a = 6.8642(5), b = 16.507(1), c = 13.074(1) Å, β = 82.407(3)°, space group P21/n, Z = 4]. The geometry about the titanium atom is a distorted tetrahedron, with a (centroid)-Ti-(centroid) angle of 131.29° and a S? Ti? S angle of 93.38°. The six-membered ring TiS5 has a cyclohexane-like chair configuration. The structural results are compared to those for similar type titanium complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号