首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let G be a finitely generated group, and A a ?[G]-module of flat dimension n such that the homological invariant Σ n (G, A) is not empty. We show that A has projective dimension n as a ?[G]-module. In particular, if G is a group of homological dimension hd(G) = n such that the homological invariant Σ n (G, ?) is not empty, then G has cohomological dimension cd(G) = n. We show that if G is a finitely generated soluble group, the converse is true subject to taking a subgroup of finite index, i.e., the equality cd (G) = hd(G) implies that there is a subgroup H of finite index in G such that Σ(H, ?) ≠ ?.  相似文献   

2.
《代数通讯》2013,41(9):3367-3373
ABSTRACT

Let D be a finite dimensional F -central division algebra and G an irreducible subgroup of D*: = GL 1(D). Here we investigate the structure of D under various group identities on G. In particular, it is shown that when [D:F] = p 2, p a prime, then D is cyclic if and only if D* contains a nonabelian subgroup satisfying a group identity.  相似文献   

3.
S. Akbari  D. Kiani  F. Ramezani 《代数通讯》2013,41(9):3532-3538
The commuting graph of a ring R, denoted by Γ(R), is a graph of all whose vertices are noncentral elements of R, and 2 distinct vertices x and y are adjacent if and only if xy = yx. In this article we investigate some graph-theoretic properties of Γ(kG), where G is a finite group, k is a field, and 0 ≠ |G| ∈k. Among other results it is shown that if G is a finite nonabelian group and k is an algebraically closed field, then Γ(kG) is not connected if and only if |G| = 6 or 8. For an arbitrary field k, we prove that Γ(kG) is connected if G is a nonabelian finite simple group or G′ ≠ G″ and G″ ≠ 1.  相似文献   

4.
For any integer n ≠ 0,1, a group G is said to be “n-Bell” if it satisfies the identity [x n ,y] = [x,y n ]. It is known that if G is an n-Bell group, then the factor group G/Z 2(G) has finite exponent dividing 12n 5(n ? 1)5. In this article we show that this bound can be improved. Moreover, we prove that every n-Bell group is n-nilpotent; consequently, using results of Baer on finite n-nilpotent groups, we give the structure of locally finite n-Bell groups. Finally, we are concerned with locally graded n-Bell groups for special values of n.  相似文献   

5.
Wei Zhou  Zeyong Duan 《代数通讯》2013,41(12):4453-4457
Let H be a subgroup of a group G. We say that H satisfies the power condition with respect to G, or H is a power subgroup of G, if there exists a non-negative integer m such that H = G m  = 〈 g m |g ? G 〉. In this note, the following theorem is proved: Let G be a group and k the number of nonpower subgroups of G. Then (1) k = 0 if and only if G is a cyclic group (theorem of F. Szász); (2) 0 < k < ∞ if and only if G is a finite noncyclic group; (3) k = ∞ if and only if G is a infinte noncyclic group. Thus we get a new criterion for the finite noncyclic groups.  相似文献   

6.
《代数通讯》2013,41(5):2219-2227
  相似文献   

7.
Given a polynomial f ∈ ?[X] such that f(?) ? ?, we investigate whether the set f(?) can be parametrized by a multivariate polynomial with integer coefficients, that is, the existence of g ∈ ?[X 1,…, X m ] such that f(?) = g(? m ). We offer a necessary and sufficient condition on f for this to be possible. In particular, it turns out that some power of 2 is a common denominator of the coefficients of f, and there exists a rational β with odd numerator and odd prime-power denominator such that f(X) = f(β ?X). Moreover, if f(?) is likewise parametrizable, then this can be done by a polynomial in one or two variables.  相似文献   

8.
A group G is called a Camina group if G′ ≠ G and each element x ∈ G?G′ satisfies the equation x G  = xG′, where x G denotes the conjugacy class of x in G. Finite Camina groups were introduced by Alan Camina in 1978, and they had been studied since then by many authors. In this article, we start the study of infinite Camina groups. In particular, we characterize infinite Camina groups with a finite G′ (see Theorem 3.1) and we show that infinite non-abelian finitely generated Camina groups must be nonsolvable (see Theorem 4.3). We also describe locally finite Camina groups, residually finite Camina groups (see Section 3) and some periodic solvable Camina groups (see Section 5).  相似文献   

9.
Lingli Wang 《代数通讯》2013,41(2):523-528
Let G be a nonabelian group and associate a noncommuting graph ?(G) with G as follows: The vertex set of ?(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. In 1987, Professor J. G. Thompson gave the following conjecture.

Thompson's Conjecture. If G is a finite group with Z(G) = 1 and M is a nonabelian simple group satisfying N(G) = N(M), then G ? M, where N(G):={n ∈ ? | G has a conjugacy class of size n}.

In 2006, A. Abdollahi, S. Akbari, and H. R. Maimani put forward a conjecture (AAM's conjecture) in Abdollahi et al. (2006) as follows.

AAM's Conjecture. Let M be a finite nonabelian simple group and G a group such that ?(G) ? ? (M). Then G ? M.

In this short article we prove that if G is a finite group with ?(G) ? ? (A 10), then G ? A 10, where A 10 is the alternating group of degree 10.  相似文献   

10.
Mark L. Lewis 《代数通讯》2013,41(4):1273-1292
A finite group G is odd-square-free if no irreducible complex character of G has degree divisible by the square of an odd prime. We determine all odd-square-free groups G satisfying S ≤ G ≤ Aut(S) for a finite simple group S. More generally, we show that if G is any nonsolvable odd-square-free group, then G has at most two nonabelian chief factors and these must be simple odd-square-free groups. If the alternating group A 7 is involved in G, the structure of G can be further restricted.  相似文献   

11.
Let G be a finite group. We prove that the theory af abelian-by-G groups is decidable if and only if the theory of modules over the group ring ?[G] is decidable. Then we study some model theoretic questions about abelian-by-G groups, in particular we show that their class is elementary when the order of G is squarefree. Mathematics Subject Classification: 03C60, 03B25.  相似文献   

12.
Let G be a finite group and cd(G) be the set of irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd(G) = cd(H), then G ? H × A, where A is an abelian group. We examine arguments to verify this conjecture for the simple groups of Lie type of rank two. To illustrate our arguments, we extend Huppert's results and verify the conjecture for the simple linear and unitary groups of rank two.  相似文献   

13.
We study finitely generated modules over k[G] for a finite abelian p-group G, char(k) = p, through restrictions to certain subalgebras of k[G]. We define p-power points, shifted cyclic p-power order subgroups of k[G], and give characterizations of these. We define modules of constant p t -Jordan type, constant p t -power-Jordan type as generalizations of modules of constant Jordan type, and p t -support, nonmaximal p t -support spaces. We obtain a filtration of modules of constant Jordan type with modules of constant p-power Jordan type as the last term and give examples of non-isomorphic modules of constant p-power Jordan type having the same constant Jordan type.  相似文献   

14.
In §2, we prove that if a 2-group G and all its nonabelian maximal sub-groups are two-generator, then G is either metacyclic or minimal non-abelian. In §3, we consider a similar question for p > 2. In §4 the 2-groups all of whose minimal nonabelian subgroups have order 16 and a cyclic subgroup of index 2, are classified. It is proved, in §5, that if G is a nonmetacyclic two-generator 2-group and A, B, C are all its maximal subgroups with d(A) ≤ d(B) ≤ d(C), then d(C) = 3 and either d(A) = d(B) = 3 (this occurs if and only if G/G′ has no cyclic subgroup of index 2) or else d(A) = d(B) = 2. Some information on the last case is obtained in Theorem 5.3.  相似文献   

15.
G be a nonabelian torsion-free group. Let C be a finite generating subset of G such that . We prove that, for all subsets B of G with , we have . In particular, a finite subset X with cardinality satisfies the inequality if and only if there are elements , such that the following two conditions hold: (i) . (ii) where . Received: October 13, 1997/Revised: Revised August 18, 1998  相似文献   

16.
We associate a graph Γ G to a nonlocally cyclic group G (called the noncyclic graph of G) as follows: take G\ Cyc(G) as vertex set, where Cyc(G) = {x ? G| 〈x, y〉 is cyclic for all y ? G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of Γ G is finite if and only if Γ G has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with Γ G  ? Γ H and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose noncyclic graphs are “unique”, i.e., if Γ G  ? Γ H for some group H, then G ? H. In view of these examples, we conjecture that every finite nonabelian simple group has a unique noncyclic graph. Also we give some examples of finite noncyclic groups G with the property that if Γ G  ? Γ H for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite noncyclic groups.  相似文献   

17.
18.
O. Macedońska 《代数通讯》2013,41(12):4661-4667
Let F = ?x, y? be a free group. It is known that the commutator [x, y ?1] cannot be expressed in terms of basic commutators, in particular in terms of Engel commutators. We show that the laws imposing such an expression define specific varietal properties. For a property 𝒫 we consider a subset U(𝒫) ? F such that every law of the form [x, y ?1] ≡ u, u ∈ U(𝒫) provides the varietal property 𝒫. For example, we show that each subnormal subgroup is normal in every group of a variety 𝔙 if and only if 𝔙 satisfies a law of the form [x, y ?1] ≡ u, where u ∈ [F′, ?x?].  相似文献   

19.
Let G be a finite group and cd(G) be the set of irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd(G) = cd(H), then G ≅ H×A, where A is an abelian group. In this paper, we verify the conjecture for the twisted Ree groups 2 G 2(q 2) for q 2 = 32m + 1, m ≥ 1. The argument involves verifying five steps outlined by Huppert in his arguments establishing his conjecture for many of the nonabelian simple groups.  相似文献   

20.
We consider the graph Γ(G), associated with the conjugacy classes of a group G. Its vertices are the nontrivial conjugacy classes of G, and we join two different classes C, D, whenever there exist x ∈ G and y ∈ D such that xy = yx. The aim of this article is twofold. First, we investigate which graphs can occur in various contexts and second, given a graph Γ(G) associated with G, we investigate the possible structure of G. We proved that if G is a periodic solvable group, then Γ(G) has at most two components, each of diameter at most 9. If G is any locally finite group, then Γ(G) has at most 6 components, each of diameter at most 19. Finally, we investigated periodic groups G with Γ(G) satisfying one of the following properties: (i) no edges exist between noncentral conjugacy classes, and (ii) no edges exist between infinite conjugacy classes. In particular, we showed that the only nonabelian groups satisfying (i) are the three finite groups of order 6 and 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号