首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An isomeric series of homologous crownophanes (i.e., macrocycles possessing structural features of crown ethers and cyclophanes) has been prepared via a concise and modular synthetic route. Macrocyclization is achieved in reasonable yield during the course of an enaminone-triggered benzannulation with bis(aryl ethynyl ketone) reaction partners. The crownophanes examined were active alkali cation binding agents in the gas phase, but failed to exhibit ionophoric properties in solution. On the basis of X-ray crystallographic analysis, it is concluded that the cyclophane framework of these macrocycles is too large and rigid to allow efficient interaction with the cations examined.  相似文献   

2.
By means of four- and six-component cyclization reaction various cyclophanes were synthesized. The components were the di(lithium) salts of 1,4-di(ethynyl)benzene (11), 4,4'-di(ethynyl)biphenyl (13), 1,4-di(ethynyl)-2,5-di(n-hexyl)benzene (18), and 1,4-di(ethynyl)-2,5-di(n-propyl)benzene (19). These building blocks were reacted with alpha,omega-dithiocyanato-n-alkanes and alpha,omega-diselenocyanato-n-alkanes with n = 3-6. In the case of 10 also 1,1'-di(2-thiocyanatoethyl)cyclohexane (24) was reacted to afford a cyclophane comprising three subunits of 11. From most of the resulting macrocyclic cyclophanes (4(n) (n = 3, 5), 5, 6, 7(n) , 8(n) (n = 3-6), 9(n) (n = 3, 5), and 10), we were able to grow single crystals. The X-ray analysis of 4(3), 7(3), 8(3), 8(4), 6, 7(5), and 8(5) revealed close contacts between the chalcogen atoms. These chalcogen-chalcogen interactions impose a ribbon-shape arrangement of molecules in 4(3) and a mutual crossing of two perdendicular planes built of 8(4) molecules. For 4(3) we found a close contact (3.28 A) between the pi planes of two neighboring C6H4 rings of different molecules, whereas in 8(4) such a close contact (3.74 A) was due to an intermolecular interaction. Tubular stacking of the macrocyclic rings was found for 7(5) and 8(5) caused by a ladder-type intermolecular chalcogen-chalcogen interaction.  相似文献   

3.
An efficient method for the homocoupling of aryl halides by electron-transfer oxidation of Lipshutz cuprates (Ar2Cu(CN)Li2) with organic electron acceptors is disclosed. Thus, various types of Lipshutz cuprates are prepared by successive treatment of aryl or heteroaryl bromides with tert-butyllithium and CuCN. The electron-transfer oxidation of Lipshutz cuprates with p-benzoquinones proceeds smoothly to afford the corresponding homocoupling products in moderate to good yields. Furthermore, it can be applied to the construction of either thiophene- or benzene-fused 10-membered ring cyclophanes. For the synthesis of 10-membered cyclophanes, the linear C-Cu-C structure of Lipshutz cuprates should be maintained in the dimetallacyclic intermediates, producing the large ring cyclophanes efficiently. The X-ray analysis of the cyclophanes reveals that the difference in the bridging atoms results in the different conformations of the macrocyclic rings. Thus, the silicon-bridged cyclophane 5a adopts a D2-symmetric structure with a twisted rhombic arrangement of four thiophene rings, whereas the methylene- and oxygen-bridged cyclophanes 5b and 5c possess C2h- and C2-symmetric structures with chair- and boatlike conformations, respectively. The 1H NMR spectrum of C2-symmetric 5c is temperature-dependent, and the activation energy (DeltaG) for the conformational change is 10.1 kcal/mol.  相似文献   

4.
Novel bis(cyclophanes) bearing glucosides and pentakis(cyclophanes) bearing glucosides were prepared as water-soluble hosts by connecting two or five macrocyclic skeletons, respectively. The guest-binding affinities of the present bis(cyclophanes) and pentakis(cyclophanes) toward a hydrophobic dye, 6-p-toluidinonaphthalene-2-sulfonate, were enhanced 13- and 1200-fold, respectively, relative to that by a corresponding monocyclic cyclophane, reflecting multivalency effects in macrocycles.  相似文献   

5.
Three neutral cyclophanes were synthesized, and their association with indole, an aromatic pi-donor, was studied. The cyclophanes were designed to contain a rigid, hydrophobic binding cavity with 1,4,5,8-naphthalenetetracarboxylic diimide or 1,5-dinitronaphthalene as the pi-acceptor. Two of the cyclophanes also contain a (S)-(valine-leucine-alanine) tripeptide unit to provide chiral hydrogen bonding interactions with guest molecules. Despite the fact that these cyclophanes contain a hydrophobic binding cavity of appropriate dimensions, their association with indole is very weak. In the case of cyclophanes derived from 1,5-dinitronaphthalene, steric interactions force the nitro groups out of the plane of the naphthalene ring, diminishing their effectiveness as pi-acceptors. A simple UV--visible titrimetric method, using N,N,N',N'-tetramethyl-1,4-phenylenediamine (TMPD) as a pi-donor, was used to rank the pi-acceptor strength of these and other aromatic units. These titrations show that 1,4,5,8-naphthalenetetracarboxylic diimide and 1,5-dinitronaphthalene derivatives are weaker pi-acceptors than viologens, which make good pi-acceptor cyclophanes. Methyl viologen is in turn a weaker pi-acceptor than anthaquinone disulfonate, suggesting that the latter may serve as a useful building block for pi-accepting cyclophane hosts.  相似文献   

6.
Cyclophane natural products comprise an intriguing class of structurally diverse compounds. As inherent for all cyclic compounds regardless of their origin, macrocyclization is naturally the most decisive step, which defines the overall efficiency of the synthetic pathway. Especially in small cyclophane molecules, this key step constitutes an even greater challenge. Due to the strain imparted by the macrocyclic system, free rotation of the benzene ring(s) is often restricted depending on both the constitution of the tether and the aromatic portions. Not surprisingly, the synthesis of natural cyclophanes with their often outstanding pharmaceutical activities and the inherent issues associated with their preparation has attracted much attention among the synthetic community. In particular, it stimulated the development of new strategies for the ring-closing step, as often otherwise well established and robust reactions fail to perform effectively. In this review, we describe the challenges synthetic chemists are facing during the synthesis of this small, but structurally and biologically fascinating class of natural products, concentrating on the representatives exhibiting configurational stability. The main focus will be on the different concepts for the installation of the macrocyclic system, in most cases the central problem in assembling these extremely rigid molecules.  相似文献   

7.
Among numerous reactions to prepare cyclophane derivatives, Claisen rearrangement reaction is very useful. We have prepared cyclophanes containing ethylene oxy bridge by double Claisen rearrangement reaction and ring-closing metathesis reaction as key steps.  相似文献   

8.
All three isomers (ortho, meta, and para) of [8.8]cyclophane bearing 1,6-dioxahexa-2,4-diyne bridges have been synthesized and structually characterized by single-crystal X-ray crystallography to determine the conformation of the cyclophanes and their cavity dimensions. The three isomeric [6.6]cyclophanes bearing 1,4-dioxabut-2-yne bridges have also been synthesized from but-2-yne-1,4-diol ditosylate and the isomeric dihydroxybenzenes. The [6.6]orthocyclophane has been structurally characterized by single-crystal X-ray crystallography. The energy-minimized structures from the semiempirical AM1 calculations of these cyclophanes compare very well with the structures obtained by X-ray crystallography.  相似文献   

9.
This paper describes the synthesis, structural characterization, and solution behavior of some xylyl-linked imidazolium and benzimidazolium cyclophanes decorated with alkyl or alkoxy groups. The addition of alkyl/alkoxy chains to the cyclophanes allows for studies in chlorinated solvents, whereas previous solution studies of azolium cyclophanes have generally required highly polar solvents. The azolium cyclophanes may exist in a syn/syn conformation (azolium rings mutually syn, arene rings mutually syn) or a syn/anti conformation (azolium rings mutually syn, arene rings mutually anti). The preferred conformation is significantly affected by (i) binding of bromide (ion pairing) to the protons on the imidazolium or benzimidazolium rings, which occurs in solutions of bromide salts of the cyclophanes in chlorinated solvents, and (ii) the addition of alkoxy groups to the benzimidazolium cyclophanes. These structural modifications have also led to cyclophanes that adopt conformations not previously identified for similar azolium cyclophane analogues. Detailed (1)H NMR studies for one cyclophane identified binding of bromide at two independent sites within the cyclophane.  相似文献   

10.
The reactivity of heteroarylic ketones toward vinylmagnesium bromide (2) and the regiochemistry of the addition were investigated. The reactivity drastically increases when the carbonyl is conjugated with at least one aza group and the regiochemistry of the addition of the vinyl Grignard reagent depends on the carbonyl compound: in the series of di(heteroazolyl) ketones the O-alkylation product was observed as unique with di(1,3-benzothiazol-2-yl) ketone, and in different relative ratios with respect to the classic C-alkylation product with di(1,3-thiazol-2-yl) ketone, (1,3-benzothiazol-2-yl) (1,3-thiazol-2-yl) ketone, and di(1,3-benzoxazol-2-yl) ketone, whereas di(N-methylbenzimidazol-2-yl) ketone gave the exclusive formation of the carbinol. This behavior can be explained by the intervention of the delocalization power of the heterocyclic ring and this was confirmed by the results obtained from the reaction between vinylmagnesium bromide and a series of mixed (1,3-benzothiazol-2-yl) (para-substituted phenyl) ketones, that showed a relative O-/C-alkylation ratio dependent on the nature and on the electronic effect of the substituent on the phenyl ring. The results are in agreement with the existence of intermediate species bearing a negative charge on the benzylic carbonyl carbon atom, and make the O-alkylation reaction between vinyl Grignard reagents and carbonyl compounds no longer a rare case, since it was observed with a number of heterocyclic carbonyl compounds, such as (1,3-benzothiazol-2-yl) aryl ketones and di(heteroaryl) ketones of the pentatomic 1,3-heteroazolic series.  相似文献   

11.
Functionalized compressed ring cyclophanes are interesting oligomers because such compounds may provide as interchain connections or recombining fluorescent center when they are polymerized into a conducting polymer. The synthesis and the electro-oxidation of bis-dithienyl cyclophane are reported along with the main electrochemical characteristics of the resulting polymer.  相似文献   

12.
The effect of the [2.2.2]cyclophane ring structure on the reduction of 1,2,5-thiadiazole ring incorporated in cyclophanes 1a-c and 2a-c was investigated. When reduced by sodium metal in ethanol followed by acetylation, para[23]cyclophane 1 gave a mixture of the expected cis- and trans-diamides, 3 and 4 , in which 4 was the major product. On the other hand, reduction of 1 with lithium aluminum hydride proceeded in a cis-selective manner and gave 3 as a major product after a treatment of the reduced products with acetic anhydride. The reduction of metacyclophane 2 , which is less strained than 1 , proceeded exclusively in cis-fashion and a subsequent treatment of the reduction product with acetic anhydride gave only cis-diamide 6 .  相似文献   

13.
Steroid cyclophanes, bearing four bile acid moieties covalently placed on a tetraazaparacyclophane skeleton, were designed and synthesized as artificial cell-surface receptors. Guest-binding behavior of the steroid cyclophanes embedded in a bilayer membrane formed with a synthetic peptide lipid was clarified by means of fluorescence and circular dichroism spectroscopy. We found that the steroid cyclophane effectively bound aromatic guests in both bilayer membranes and aqueous solution. In addition, copper(II) ions acted as a guest species for the steroid cyclophane and a competitive inhibitor toward a NADH-dependent lactate dehydrogenase (LDH). On these grounds, we constituted a supramolecular assembly as an artificial signaling system in combination with the steroid cyclophane, a cationic peptide lipid, and LDH. As a consequence, the steroid cyclophane acted as an effective artificial cell-surface receptor being capable of transmitting an external signal to the enzyme in collaboration with copper(II) ions as a signal transmitter.  相似文献   

14.
Cyclophanes of perylene tetracarboxylic diimides (PDIs) with different substituents at the bay positions, namely four phenoxy groups at the 1,7-positions (1), four piperidinyl groups at the 1,7-positions (2), and eight phenoxy groups at the 1,6,7,12-positions (3) of the two PDI rings, have been synthesized by the condensation of perylene dianhydride with amine in a dilute solution. These novel cyclophanes were characterized by (1)H NMR spectroscopy, MALDI-TOF mass spectrometry, electronic absorption spectroscopy, and elemental analysis. The conformational isomers of cyclophanes substituted with four piperidinyl groups at the 1,7-positions (2 a and 2 b) were successfully separated by preparative TLC. The main absorption band of the cyclophanes shifts significantly to the higher energy side in comparison with their monomeric counterparts, which indicates significant pi-pi interaction between the PDI units in the cyclophanes. Nevertheless, both the electronic absorption and fluorescence spectra of the cyclophanes were found to change along with the number and nature of the side groups at the bay positions of the PDI ring. Time-dependent DFT calculations on the conformational isomers 2 a and 2 b reproduce well their experimental electronic absorption spectra. Electrochemical studies reveal that the first oxidation and reduction potentials of the PDI ring in the cyclophanes increase significantly compared with those of the corresponding monomeric counterparts, in line with the change in the energy of the HOMO and LUMO according to the theoretical calculations.  相似文献   

15.
New tricyclic spacers, readily available through fourfold Mannich reaction of substituted dibenzyl ketones, were introduced into a series of ten H2O-soluble cyclophanes with spacious preorganized cavity binding sites. These spacers provide H2O-solubility with amine or crown-ether functionality remote from the cyclophane cavity while directing functional groups such as keto or OH groups in a precise geometrical array inside the cavity. The cyclophanes were designed to include organic substrates via a combination of apolar and specific polar functional group interactions. The X-ray crystal-structure analysis of the tritopic receptor 18 with one potential neutral-molecule and two cation-binding sites showed a large rectangular open cavity with dimensions of roughly 9 × 14 Å and a spacing of 9.7 Å between the O-atoms of two convergent C?O groups. Despite the binding-site preorganization, cyclophanes incorporating two of the new spacers did not show any substrate binding in aqueous solutions. The failure of these systems to function as receptors is mainly due to steric hindrance to important cyclophane aromatic ring-guest interactions. Also, the favorable solvation of the intracavity functionality may prevent the formation of complexes. Hybrid receptors constructed from the novel spacers and diphenylmethane units were found to bind flat aromatic substrates as well as bulky [4.2]paracyclophanes. The observed large differences in stability (ΔΔG°> 2 kcal mol?1) of the complexes formed by three structurally closely related hybrid receptors with convergent C?O, OH or CH2 groups and 6-hydroxynaphthalene-2-carbonitrile as guest can be explained by a strong solvation effect of the convergent functional groups on apolar inclusion complexation.  相似文献   

16.
Reactions of [2N]cyclophanes (N = 2, ?6) with solvated electrons in 1,2-di-methoxyethane at 193 K have been studied by ESR. and ENDOR. spectroscopy. All but the two most highly bridged cyclophanes (N = 5 and 6) are reduced to paramagnetic species under these conditions. Whereas the radical anions of [2.2]-paracyclophane and [23](1,2,4)- and [24](l,2,4,5)cyclophanes are sufficiently persistent to be characterized by their hyperfine data, those of the remaining five cyclophanes undergo a rapid cyclization to the radical anions of 4,5,9,10-tetrahydropyrenes. These have been identified as the unsubstituted tetrahydropyrene (from [2.2]-metacyclophane and [23](l,2,3)cyclophane), the 2,7-dimethyl-derivative (from [23](1,3,5)- and [24](l,2,3,5)cyclophanes) and the 1,8-dimethyl-derivative (from (24l,2,3,4)cyclophane). The persistence of the cyclophane radical anions seems to depend on the numbers, nmeta and npara, of the meta-and para-positions of the bridging ethano groups in the two benzene rings. The prerequisite for the radical anion to be persistent is nmeta?npara.  相似文献   

17.
用三苯基氢化锡,三对甲苯基氢化锡作为锡氢化试剂与9-乙炔基-9-芴醇进行反应,合成了2个有机锡化合物:[Z]-2-(三苯基锡基)-1-(9-芴醇)乙烯(1)和[Z]-2-(三对甲苯基锡基)-1-(9-芴醇)乙烯(2)。化合物1和2分别与ICl,Br~2,I~2反应,得到6个有机锡一卤化物,6个有机锡二卤化物和2个有机锡混合卤化物(3-16)。有机锡一碘化物7,13和有机锡二碘化物8,14与KOH乙醇溶液反应,分别得到相应的有机锡氢氧化物17,18和有机锡氧化物19,20。有机锡二碘化物8,14分别与含氮双齿配体1,10-邻菲罗啉(Phen),2,2'-联吡啶(Bipy),8-羟基喹啉(Oxin)反应,得到6个相应的配合物21-26。26个新化合物通过元素分析,锡含量测定,IR,^1HNMR测定对其结构进行了表征。同时测定了化合物2的晶体结构,晶体属单斜晶系,空间群P2~1/c。化合物2是以Sn原子为中心扭曲的四面体构型。  相似文献   

18.
Reaction of piperazine and 1,3-bis(bromomethyl)-2-nitrobenzene under high-dilution conditions yields cyclic trimeric trinitro, tetrameric tetranitro, and pentameric pentanitro piperazine cyclophanes. Reduction of the nitro groups with SnCl(2) under acidic conditions produces the corresponding triamino and tetraamino piperazine cyclophanes. The solution studies of both nitro and amino piperazine cyclophanes at 30 degrees C by (1)H NMR spectroscopy shows symmetrical structures owing to the fast conformational exchange, whereas the low temperature studies of the tetraamino piperazine cyclophane reveals interesting dynamic behavior that indicates additional intramolecular interactions. Careful crystallizations of the trimeric trinitro and triamino and the tetrameric tetraamino cyclophanes resulted in crystals suitable for X-ray diffraction studies. In the crystalline state the amino-functionalized cyclophanes manifest an extraordinary circular intramolecular hydrogen-bonding network that leads to a fixed 3D structure. Hydrogen bonding in the triamino trimer leads to orientation of all three of the amino groups on the same side of the macrocycle, namely, the rcc conformation, whereas the tetraamino tetramer folds into a more compact shell-like conformation. During the crystallization process one acetonitrile guest is enclosed into the cavity of the tetraamino cyclophane, which gives a crystalline inclusion complex with remarkable resemblance to the famous Pacman motif. The folding, which mimics the behavior of some cyclic peptides and pyrroles, is induced by intramolecular hydrogen bonding from the amino groups to the tertiary amine groups of the piperazines. The cavity of the tetraamino tetramer is markedly smaller than in the corresponding, but nonfolded, tetranitro tetramer and the guest/host volume ratio (packing coefficient) for the acetonitrile and the cavity is approximately 50 %, which indicates a good size match for acetonitrile inclusion.  相似文献   

19.
Synthesis of a new class of π-electron-deficient tetracationic cyclophane ring, cyclobis(paraquat-p-phenylene), carrying one or two paramagnetic side-arms based on 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) moiety has been achieved in five steps starting from 2,5-dimethyl benzoic acid. The possibility of exploiting the proposed cyclophanes as hosts in rotaxane-like structures was tested preparing the monoradical receptor by the clipping procedure in the presence of 1,5-dimethoxynaphthalene (DMN). The addition of template allows the isolation of the monoradical complex with DMN.  相似文献   

20.
The pi-stacking interaction between shape-persistent cyclophanes works cooperatively with multiple hydrogen bonding sites to form cyclophane dimers. These findings considerably broaden the applicability of pi-stacking interactions as a driving force in self-assembly chemistry. A gel formation effect was also noticed in one of the cyclophanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号