首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We establish local and global well-posedness of the 2D dissipative quasi-geostrophic equation in critical mixed norm Lebesgue spaces. The result demonstrates the persistence of the anisotropic behavior of the initial data under the evolution of the 2D dissipative quasi-geostrophic equation. The phenomenon is a priori nontrivial due to the nonlocal structure of the equation. Our approach is based on Kato's method using Picard's iteration, which can be adapted to the multi-dimensional case and other nonlinear non-local equations. We develop time decay estimates for solutions of fractional heat equation in mixed norm Lebesgue spaces that could be useful for other problems.  相似文献   

2.
We are concerned with non-local parabolic equations in the presence of a divergence free drift term. By using the classical Nash approach, we show the existence of fundamental solutions together with continuity estimates, under weak regularity assumptions on the kernel of the non-local term and the velocity of the drift term. As an application, we give an alternative proof of global regularity for the two-dimensional dissipative quasi-geostrophic equations in the critical case.  相似文献   

3.
In this note, by using a well-known commutator estimate, we give a new regularity criterion for the 2D dissipative quasi-geostrophic equations in the critical and supercritical cases.  相似文献   

4.
In this paper, following the techniques of Foias and Temam, we establish Gevrey class regularity of solutions to a class of dissipative equations with a general quadratic nonlinearity and a general dissipation including fractional Laplacian. The initial data is taken to be in Besov type spaces defined via “caloric extension”. We apply our result to the Navier–Stokes equations, the surface quasi-geostrophic equations, the Kuramoto–Sivashinsky equation and the barotropic quasi-geostrophic equation. Consideration of initial data in critical regularity spaces allow us to obtain generalizations of existing results on the higher order temporal decay of solutions to the Navier–Stokes equations. In the 3D case, we extend the class of initial data where such decay holds while in 2D we provide a new class for such decay. Similar decay result, and uniform analyticity band on the attractor, is also proven for the sub-critical 2D surface quasi-geostrophic equation.  相似文献   

5.
In this paper we study the global attractors for wave equations with nonlinear interior damping. We prove the existence, regularity and finite dimensionality of the global attractors without assuming a large value for the damping parameter, when the growth of the nonlinear terms is critical.  相似文献   

6.
For the 3D incompressible Hall magneto-hydrodynamics equations, global regularity of the weak solutions is not established so far. The major difficulty is that the dissipation given by the Laplacian operator is insufficient to control the nonlinearities. Wan obtained the global regularities of the 3D generalized Hall-MHD equations with critical and subcritical hyperdissipation in ({\em Global regularity for generalized Hall-magnetohydrodynamics systems}, Electron. J. Differential Equations, 2015, 2015(179), 1--18). We improve this slightly by making logarithmic reductions in the dissipation and still obtain the global regularity.  相似文献   

7.
This paper studies the global existence and regularity of classical solutions to the 2D incompressible magneto-micropolar equations with partial dissipation. The magneto-micropolar equations model the motion of electrically conducting micropolar fluids in the presence of a magnetic field. When there is only partial dissipation, the global regularity problem can be quite difficult. We are able to single out three special partial dissipation cases and establish the global regularity for each case. As special consequences, the 2D Navier-Stokes equations, the 2D magnetohydrodynamic equations, and the 2D micropolar equations with several types of partial dissipation always possess global classical solutions. The proofs of our main results rely on anisotropic Sobolev type inequalities and suitable combination and cancellation of terms.  相似文献   

8.
The non blow-up of the 3D ideal incompressible magnetohydrodynamics (MHD) equations is proved for a class of three-dimensional initial data characterized by uniformly large vorticity and magnetic field in bounded cylindrical domains. There are no conditional assumptions on properties of solutions at later times, nor are the global solutions close to some 2D manifold. The approach of proving regularity is based on investigation of fast, singular, oscillating limits and nonlinear averaging methods in the context of almost periodic functions. We establish the global regularity of the 3D limit resonant MHD equations without any restrictions on the size of the 3D initial data. After establishing the strong convergence to the limit resonant equations, we bootstrap this into the regularity on arbitrarily large time intervals for solutions of the 3D MHD equations with weakly-aligned uniformly large vorticity and magnetic field at t = 0. Bibliography: 36 titles. Dedicated to the memory of O. A. Ladyzhenskaya Published in Zapiski Nauchnykh Seminarov POMI, Vol. 318, 2004, pp. 203–219.  相似文献   

9.
This paper investigates the global regularity issue concerning a model equation proposed by Hou and Lei (2008) [9] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. We establish the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power satisfies an explicit condition. This condition is exactly the same as in the case of the 3D generalized Navier-Stokes equations and is due to the balance between a more regular nonlinearity and a less effective (five-dimensional) Laplacian.  相似文献   

10.
The method of ?-trajectories is presented in a general setting as an alternative approach to the study of the large-time behavior of nonlinear evolutionary systems. It can be successfully applied to the problems where solutions suffer from lack of regularity or when the leading elliptic operator is nonlinear. Here we concentrate on systems of a parabolic type and apply the method to an abstract nonlinear dissipative equation of the first order and to a class of equations pertinent to nonlinear fluid mechanics. In both cases we prove the existence of a finite-dimensional global attractor and the existence of an exponential attractor.  相似文献   

11.
We consider the evolution of viscous fluids in a 2D horizontally periodic slab bounded above by a free top surface and below by a fixed flat bottom. This is a free boundary problem. The dynamics of the fluid are governed by the incompressible stationary Navier–Stokes equations under the influence of gravity and the effect of surface tension. We develop the global theory of solutions in low regularity Sobolev spaces for small data by nonlinear energy estimates.  相似文献   

12.
We are concerned with the global weak rigidity of the Gauss–Codazzi–Ricci (GCR) equations on Riemannian manifolds and the corresponding isometric immersions of Riemannian manifolds into the Euclidean spaces. We develop a unified intrinsic approach to establish the global weak rigidity of both the GCR equations and isometric immersions of the Riemannian manifolds, independent of the local coordinates, and provide further insights of the previous local results and arguments. The critical case has also been analyzed. To achieve this, we first reformulate the GCR equations with div-curl structure intrinsically on Riemannian manifolds and develop a global, intrinsic version of the div-curl lemma and other nonlinear techniques to tackle the global weak rigidity on manifolds. In particular, a general functional-analytic compensated compactness theorem on Banach spaces has been established, which includes the intrinsic div-curl lemma on Riemannian manifolds as a special case. The equivalence of global isometric immersions, the Cartan formalism, and the GCR equations on the Riemannian manifolds with lower regularity is established. We also prove a new weak rigidity result along the way, pertaining to the Cartan formalism, for Riemannian manifolds with lower regularity, and extend the weak rigidity results for Riemannian manifolds with corresponding different metrics.  相似文献   

13.
We consider a shape optimization problem for Maxwell's equations with a strictly dissipative boundary condition. In order to characterize the shape derivative as a solution to a boundary value problem, sharp regularity of the boundary traces is critical. This Note establishes the Fréchet differentiability of a shape functional.  相似文献   

14.
We study the global existence and regularity of classical solutions to the 2D incompressible magneto‐micropolar equations with partial dissipation. We establish the global regularity for one partial dissipation case. The proofs of our main results rely on anisotropic Sobolev type inequalities and suitable combination and cancellation of terms.  相似文献   

15.
The dynamic Maxwell equations with a strictly dissipative boundary condition is considered. Sharp trace regularity for the electric and the magnetic field are established for both: weak and differentiable solutions. As an application a shape optimization problem for Maxwell's equations is considered. In order to characterize the shape derivative as a solution to a boundary value problem, the aforementioned sharp regularity of the boundary traces is critical.  相似文献   

16.
We study the two-dimensional quasi-geostrophic equations (2D QG) in Sobolev spaces. We first prove a new analytic condition for global regularity which is both sufficient and necessary. We then prove several new results on the geometric constraints on the 2D QG active scalar which suppress the development of singularity from the nonlinear stretching mechanism. We focus mainly on the case with critical dissipation. Our results are also relevant to the inviscid case.  相似文献   

17.
Whether or not classical solutions of the 2D incompressible MHD equations without full dissipation and magnetic diffusion can develop finite-time singularities is a difficult issue. A major result of this paper establishes the global regularity of classical solutions for the MHD equations with mixed partial dissipation and magnetic diffusion. In addition, the global existence, conditional regularity and uniqueness of a weak solution is obtained for the 2D MHD equations with only magnetic diffusion.  相似文献   

18.
The incompressible Boussinesq equations not only have many applications in modeling fluids and geophysical fluids but also are mathematically important. The well-posedness and related problem on the Boussinesq equations have recently attracted considerable interest. This paper examines the global regularity issue on the 2D Boussinesq equations with fractional Laplacian dissipation and thermal diffusion. Attention is focused on the case when the thermal diffusion dominates. We establish the global well-posedness for the 2D Boussinesq equations with a new range of fractional powers of the Laplacian.  相似文献   

19.
Global dynamics of the diffusive Hindmarsh–Rose equations with memristors as a new proposed model for neuron dynamics are investigated in this paper. We prove the existence and regularity of a global attractor for the solution semiflow through uniform analytic estimates showing the higher-order dissipative property and the asymptotically compact characteristics of the solutions by the approach of Kolmogorov–Riesz theorem. The quantitative bounds of the regions containing this global attractor respectively in the state space and in the regular space are explicitly expressed by the model parameters.  相似文献   

20.
We study some basic analytical problems for nonlinear Dirac equations involving critical Sobolev exponents on compact spin manifolds. Their solutions are obtained as critical points of certain strongly indefinite functionals defined on H1/2-spinors with critical growth. We prove the existence of a non-trivial solution for the Brezis-Nirenberg type problem when the dimension m of the manifold is larger than 3. We also prove a global compactness result for the associated Palais-Smale sequences and the regularity of -weak solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号