首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2005,17(17):1534-1539
The construction, performance, and applications of a novel ytterbium(III) sensor based on N‐(2‐pyridyl)‐N′‐(2‐methoxyphenyl)‐thiourea (PMT), as an excellent carrier, in plasticized poly(vinyl chloride) PVC matrix, is described. The influences of membrane composition and pH on the potentiometric response of the sensor were investigated. The sensor exhibits a nice Nernstian response for Yb(III) ion over a wide concentration range of 4 decades of concentration (1.0×10?6–1.0×10?2 M), and a detection limit of 5.0×10?7 M. The response time of the electrodes is between 8 and 10 s, depending on the concentration of ytterbium(III) ions. The proposed sensor can be used for about 8 weeks without any considerable divergence in potential. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. The best performance was observed for the membrane containing; 30% PVC, 59% o‐nitrophenyloctyl ether (NPOE) as solvent mediator, 7% PMT, and 4% sodium tetraphenyl borate (NaTPB). It was successfully applied as indicator electrodes in the potentiometric titration of Yb(III) with EDTA and for the determination of fluoride ion in two mouth wash formulations. The proposed La(III) sensor was found to work well under laboratory conditions. It was also used as an indicator electrode in titration of a 1.0×10?4 M of Yb(III) with a standard EDTA solution (1.0×10?2 M). It was also used for determination of Yb(III) ion in Xenotime .  相似文献   

2.
《Electroanalysis》2003,15(12):1038-1042
A novel gadolinium ion‐selective electrode based on the antibiotic omeprazole as membrane carrier was prepared. The electrode has a linear dynamic range between 1.0×10?1 and 1.0×10?5 M, with a Nernstian slope of 19.3 ± 0.3 mV decade?1 and a detection limit of 5.0×10?6 M. The potentiometric response is independent of the pH of the solution in the pH range 4.0–10.0. The electrode possesses the advantages of short conditioning time, fast response time and especially, very good selectivity over a large number of other cations. The electrode can be used for at least 2 months without any considerable divergence in potentials. It was used as an indicator electrode in potentiometric titration of Gd(III) ions with EDTA.  相似文献   

3.
《Electroanalysis》2006,18(16):1620-1626
A polyvinylchloride membrane sensor based on N,N′‐bis(salecylidene)‐1,2‐phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+‐selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10?7–3.0×10?2 M), with a detection limit of 6.0×10?7 M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2–4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples.  相似文献   

4.
《Electroanalysis》2005,17(9):776-782
Three recently synthesized Schiff's bases were studied to characterize their ability as Cr3+ ion carrier in PVC‐membrane electrodes. The polymeric membrane (PME) and coated glassy carbon (CGCE) electrodes based on 2‐hydroxybenzaldehyde‐O,O′‐(1,2‐dioxetane‐1,2‐diyl) oxime (L1) exhibited Nernstian responses for Cr3+ ion over wide concentration ranges (1.5×10?6–8.0×10?3 M for PME and 4.0×10?7–3.0×10?3 M for CGCE) and very low limits of detection (1.0×10?6 M for PME and 2.0×10?7 M for CGCE). The proposed potentiometric sensors manifest advantages of relatively fast response and, most importantly, good selectivities relative to a wide variety of other cations. The selectivity behavior of the proposed Cr3+ ion‐selective electrodes revealed a considerable improvement compared to the best previously PVC‐membrane electrodes for chromium(III) ion. The potentiometric responses of the electrodes are independent of pH of the test solution in the pH range 3.0–6.0. The electrodes were successfully applied to determine chromium(III) in water samples.  相似文献   

5.
《Electroanalysis》2005,17(20):1828-1834
A recently synthesized azao‐containing Schiff's base N,N′‐adipylbis(5‐phenylazo salicylaldehyde hydrazone) was used as a suitable neutral ion carrier in construction of a highly selective La3+‐PVC membrane electrode. The electrode exhibits a Nernstian response with a slope of 19.4 mV decade?1 over a wide concentration range (1.0×10?6–1.0×10?2 M) and a limit of detection of 4.0×10?7 M (0.05 ppm). The electrode possesses a fast response time of ca. 10 s and can be used for at least 3 months without observing any deviation. The proposed electrode revealed excellent selectivity for La3+ over a wide variety of alkali, alkaline earth, transition and heavy metal ions and could be used in a pH range of 4.0–8.0. The practical utility of the electrode has been demonstrated by its use as an indicator electrode in the potentiometric titration of La3+ ions with EDTA and in determination of F? ion in some pharmaceutical preparations.  相似文献   

6.
A highly selective PVC‐membrane electrode based on 2,6‐diphenylpyrylium fluoroborate is presented. The electrode reveals a Nernstian potentiometric response for sulfate ion over a wide concentration range (5.0 × 10?6‐1.0 × 10?1 M). The electrode has a response time of about 10 s and can be used for at least 2 months without any divergence. The proposed sensor revealed very good selectivities for sulfate over a wide variety of common organic and inorganic anions and could be used over a wide pH range (2.5–9.5). The detection limit of the sensor is 3.0 × 10?6 M. It was successfully applied to the direct determination of salbutamol, paramomycin tablets, and as an indicator electrode for potentiometric titration of sulfate ions with barium ions.  相似文献   

7.
《Electroanalysis》2003,15(19):1561-1565
A highly selective membrane electrode for the determination of ultratrace amounts of lead was prepared. The PVC membrane electrode based on 2‐(2‐ethanoloxymethyl)‐1‐hydroxy‐9,10‐anthraquinone (AQ), directly coated on graphite, exhibits a good Nernstian response for Pb(II) ions over a very wide concentration range (1.0×10?7–1.0×10?2 M) with a limit of detection of 8.0×10?8 M. It has a fast response time of ca. 10 s and can be used over a period 2 months with good reproducibility (SD=±0.2 mV). The electrode revealed a very good selectivity respect to common alkali, alkaline earth, transition and heavy metal ions and could be used in the pH range of 3.5–6.8. It was used as an indicator electrode in potentiometric titration of lead ions with chromate and oxalate, and in indirect determination of lead in spring water samples.  相似文献   

8.
《Electroanalysis》2004,16(21):1771-1776
In this work a dysprosium [Dy(III)]‐selective solvent polymeric membrane sensor based on N,N‐bis(pyrrolidene) benzne‐1,2‐diamine, poly(vinyl chloride)(PVC), the plasticizer benzylacetate (BA), and anionic site is described. This sensor responds to Dy(III) activity in a linear range from 1.0×10?5 to 1.0×10?1 M, with a slope of 20.6±0.2 mV per decade and a detection limit of 6.0×10?6 M at the pH range of 3.5–8.0. It has a fast response time of<20 s in the entire concentration range, and can be used for at least 2 months without any considerable divergence in the electrode potentials. The proposed sensor revealed comparatively good selectivity with respect to common alkali, alkaline earth, transition and heavy metal ions. It was used as an indicator electrode in the potentiometric titration of fluoride ions and in determination of concentration of F ions in some mouth washing solutions.  相似文献   

9.
《Electroanalysis》2004,16(16):1330-1335
A poly(vinyl chloride) membrane sensor based on oxalic acid bis (cyclohexylidene hydrazide) as membrane carrier was prepared and investigated as a Cr(III)‐selective electrode. The electrode reveals a Nernstian behavior (slope 19.8±0.4 mV decade?1) over a wide Cr(III) ion concentration range 1.0×10?7–1.0×10?2 mol dm?3 with a very low limit of detection (i.e., down to 6.3×10?8 mol dm?3). The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 1.7–6.5. The electrode possesses advantage of very fast response, relatively long lifetime and especially good selectivity to wide variety of other cations. The sensor was used as an indicator electrode, in the potentiometric titration of chromium ion and in the determination of Cr(III) in waste water and alloy samples.  相似文献   

10.
《Electroanalysis》2004,16(12):1002-1008
Preliminary theoretical studies revealed the selective complexation of bis (2‐mercaptoanil) diacetyl (BMDA) with La3+ over several alkali, alkaline earth and heavy metal ions. Thus, novel PVC‐based membrane (PBM) and coated graphite membrane (CGM) sensors for La(III) based on BMDA were prepared. The electrodes display Nernstian behavior over wide concentration ranges (i.e., 1.0×10?5–1.0×10?1 M for PBM and 1.0×10?6–1.0×10?1 M for CGM). The potential response of sensors was pH independent in the range of 4.0–8.0. The sensors possess satisfactory reproducibility, fast response time (<15 s), and specially excellent discriminating ability for La3+ ions with respect to most of the cations. The membrane sensor was used as an indicator electrode in potentiometric titration of lanthanum ions with EDTA. The coated graphite membrane electrode was applied in determination of fluoride ions in mouth wash preparations.  相似文献   

11.
《Electroanalysis》2004,16(11):910-914
A novel bromide PVC‐based membrane sensor, based on iron(III)‐salen (IS) as an electroactive material, is successfully developed. The sensor possesses the advantages of low detection limit (6.0×10?6), wide working concentration range (7.0×10?6–1.0×10?1 M), Nernstian behavior (slope of 59.0±0.5 mV per decade), low response time (<15 s), wide working pH range (3–9), and specially, high bromide selectivity over a wide variety of organic and inorganic anions, specially iodide, chloride, and hydroxide ions. The electrode was used in the direct potentiometric determination of hyoscine butylbromide, and as an indicator electrode in potentiometric titration of bromide ions with silver ions.  相似文献   

12.
《Electroanalysis》2006,18(16):1598-1604
Four Schiff base complexes of different metal ions, M=Cr(III), Mn(III), Fe(III), and Co(III), were studied to characterize their ability as sulfate ion carriers in carbon paste electrode (CPE). The modified CPE electrode with Schiff base complex of Cr(III), N,N′‐ethylenebis(5‐hydroxysalicylideneiminato) chromium(III) Chloride, showed good response characteristics to SO42? ion. The proposed electrode exhibits a Nernstian slope of 28.9±0.4 mV per decade for SO42? ion over a wide concentration range from 1.5×10?6?4.8×10?2 M, with a detection limit of 9.0×10?7 M. The CPE electrode manifested advantages of relatively fast response time, suitable reproducibility and life time and, most important, good potentiometric selectivity relative to a wide variety of other common inorganic anions. The potentiometric response of the electrode is independent of the pH of the test solution in the pH range 4.0–9.0. The proposed electrode was used as an indicator electrode in potentiometric titration of sulfate with Ba2+ ion, the determination of zinc in zinc sulfate tablet and also determination of sulfate content of a mineral water sample.  相似文献   

13.
《Electroanalysis》2005,17(24):2260-2265
A new Cu(II) ion‐selective PVC membrane sensor based on 6‐methyl‐4‐(1‐phenylmethylidene)amino‐3‐thioxo‐1,2,4‐triazin‐5‐one (MATTO) as an excellent sensing material was developed. The electrode exhibits a Nernstian slope of 29.2±0.4 mV per decade over a very wide concentration range between 1.0×10?1 and 1.0×10?6 M, with a detection limit of 4.8×10?7 M (30.5 ng/mL). The sensor possesses the advantages of short conditioning time, fast response time (<10 s), and especially, very good selectivity towards transition and heavy metal, and some mono, di and trivalent cations. The proposed electrode was successfully applied to the determination of copper in wastewater of copper electroplating samples and as an indicator electrode in potentiometric titration of Cu(II) ions with EDTA.  相似文献   

14.
《Electroanalysis》2002,14(24):1691-1698
Three different recently synthesized aza‐thioether crowns containing a 1,10‐phenanthroline sub‐unit (L1–L3) and a corresponding acyclic ligand (L4) were studied to characterize their abilities as silver ion ionophores in PVC‐membrane electrodes. Novel conventional silver‐selective electrodes with internal reference solution (CONISE) and coated graphite‐solid contact electrodes (SCISE) were prepared based on one of the 15‐membered crowns containing two donating S atoms and two phenanthroline‐N atoms (L1). The electrodes reveal a Nernstian behavior over wide Ag+ ion concentration ranges (1.0×10?5?1.0×10?1 M for CONISE and 5.0×10?8?4.0×10?2 M for SCISE) and very low limits of detection (8.0×10?6 M for CONISE and 3.0×10?8 M for SCISE). The potentiometric response is independent from pH of the solution in the pH range 3.0–8.0. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations. The electrodes can be used for at least 2 months (for CONISE) and 4 months for (SCISE) without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of Ag+ ion and in the determination of silver in photographic emulsions and in radiographic and photographic films.  相似文献   

15.
A novel membrane sensor for selective monitoring of iodide, consisting of a triiodide‐ketoconazole ion pair complex dispersed in a PVC matrix, plasticized with a mixture of 2‐nitrophenyl octyl ether and dioctylphtalate with unique selectivity toward iodide ions, is described. The influence of membrane composition, pH of test solution and foreign ions on the electrode performance were investigated. The optimized membrane demonstrates a near‐Nernstian response for iodide ions over a wide linear range from 1.0 × 10?2 to 1.0 × 10?5 M, at 25 ± 1 °C. The electrode could be used over a wide pH range 3–10 and has the advantages of high selectivity, fast response time and good lifetime (over 4 months). It was successfully used as indicator electrode in potentiometric titrations and direct potentiometric assay of iodide ions.  相似文献   

16.
Novel PVC membrane (PME) and coated graphite (CGE) Cu2+‐selective electrodes based on 5,6,7,8,9,10‐hexahydro‐2H‐1,13,4,7,10‐benzodioxatriazacyclopentadecine‐3,11(4H,12H)‐dione are prepared. The electrodes reveal a Nernstian behavior over wide Cu2+ ion concentration ranges (1.0×10?7–1.0×10?1 M for PME and 1.0×10?8–1.0×10?1 M for CGE) with very low limits of detection (7.8×10?8 M for PME and 9.1×10?9 M for CGE). The potentiometric responses are independent of the pH of the test solutions in the pH range 2.7–6.2. The proposed electrodes possess very good selectivities for Cu2+ over a wide variety of the cations including alkali, alkaline earth, transitions and heavy metal ions. The practical utility of the proposed electrodes have been demonstrated by their use in the study of interactions between copper ions and human growth hormone (hGH) in biological systems, potentiometric titration of copper with EDTA and determination of copper content of a sheep blood serum sample and some other real samples.  相似文献   

17.
A new modified carbon paste electrode (CPE) based on a recently synthesized ligand [2‐mercapto‐5‐(3‐nitrophenyl)‐1,3,4‐thiadiazole] (MNT), self‐assembled to gold nanoparticles (GNP) as suitable carrier for Cd(II) ion with potentiometric method are described. The proposed electrode exhibits a Nernstian slope of 29.4±1.0 mV per decade for Cd(II) ion over a wide concentration range from 3.1×10?8 to 3.1×10?4 mol L?1. The detection limit of electrode was 2.0×10?8 mol L?1 of cadmium ion. The potentiometric responses of electrode based on MNT is independent of the pH of test solution in the pH range 2.0–4.0. It has quick response with response time of about 6 s. The proposed electrode show fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions. Finally, the proposed electrode was successfully employed to detect Cd(II) ion in hair and water samples.  相似文献   

18.
A new selective, sensitive, and rapid response microelectrode for microamount chromium(III) determination was developed. For the electrode preparation, fuchsin basic was electropolymerized onto a carbon microdisk electrode, and then diethylenetriamminepentaacetic acid (DTPA) was self‐assembled on the electrode surface by the reaction between DTPA and poly(fuchsin basic). The determination conditions were optimized. The electrode showed a linear response to Cr3+ ions in the concentration range of 1.0×10?6?1.0×10?4 M and exhibits a super‐Nernstian slope of 32.5±0.4 mV per decade. The detection limit is 3.6×10?7 M. The response time of the electrode is less than 10 s, and it can be used for at least 2 months with limited considerable divergences in its potentials. The proposed electrode was applied for monitoring the chromium ion level in wastewater of chromate industries.  相似文献   

19.
《Electroanalysis》2004,16(12):1009-1013
A novel ion‐selective polymeric membrane sensor based on pyrylium‐4,4‐(1,4‐phenylen) bis[2,6‐bis(2‐naphthyl)]‐bis[tetrafluoroborate] (PBGNB) as an excellent sensing material is successfully developed. The electrode possesses the advantages of a very low detection limit (5.0×10?8 M), a wide working concentration range (1.0×10?8?1.0×10?1 M) and specially, a high sulfate selectivity over most common organic and inorganic anions. The sensor displays Nernstian behavior (slope of 29.5±0.5 mV per decade) in a wide pH range (3.0–8.5). It shows a short response time in the whole concentration range (ca. 10 s). The electrode was used as an indicator electrode in the potentiometric titration of sulfate ions with barium ions. The proposed sensor was successfully applied to the direct determination of salbutamol sulfate and paromomycin sulfate.  相似文献   

20.
A new chemically modified carbon paste electrode based on a mixture of two ion‐exchangers namely chlorpheniramine‐silicotungstate (CPM‐ST) and chlorpheniramine‐tetraphenylborate (CPM‐TPB) as ion‐exchange site for determination of chlorpheniramine maleate (CPM) was described. The best performance was exhibited by the electrode having the paste containing 3.0 wt% ion‐exchangers (CPM‐ST&CPM‐TPB), 48.5 wt% graphite, 47.5 wt% DOPh and 1.0 wt% NaTPB. The proposed chemically modified carbon paste electrode exhibited a Nernstian response for CPM over a wide concentration range of 1.2×10?6 to 1.0×10?2 M with a detection limit of 5.1×10?7 M between pH 4.5 and 7.7 with fast response ≤10 s. The sensor showed good selectivity for CPM with respect to a large number of inorganic cations, organic cations, sugars, amino acids and some common drug excipients. The modified electrode was applied to potentiometric determination of CPM in its pharmaceutical preparations and biological fluids (serum and urine) with average recoveries of 97.5–102% and relative standard deviations of 0.32–1.97%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号