首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(5):885-897
Hemoglobin (Hb) was successfully immobilized on a gold electrode modified with gold nanoparticles (AuNPs) via a molecule bridge 1,6-hexanedithiol (HDT). The AFM images suggested that the HDT/gold electrode could adsorb more AuNPs. UV-vis spectra indicated that Hb on AuNPs/HDT film retained its near-native secondary structures. The electrochemical behaviors of the sensor were characterized with cyclic voltammetric techniques. The resultant electrode displayed an excellent electrocatalytical response to the reduction of hydrogen peroxide (H2O2). The linear relationship existed between the catalytic current and the H2O2 concentration ranging from 5.0 × 10?8 to 1.0 × 10?6 mol · L?1. The detection limit (S/N = 3) was 1.0 × 10?8 mol · L?1.  相似文献   

2.
《Analytical letters》2012,45(7):1117-1131
A molecularly imprinted electrochemical sensor was fabricated based on a gold electrode modified by chitosan-multiwalled carbon nanotube composite (CS-MWCNTs) multilayer films and gold nanoparticles (AuNPs) for convenient and sensitive determination of oxytetracycline (OTC). The multilayer of CS-MWCNTs composites and AuNPs were used to augment electronic transmission and sensitivity. The molecularly imprinted polymers (MIPs) were synthesized using OTC as the template molecule and o-phenylenediamine (OPD) as the functional monomer. They were modified on a gold electrode by electropolymerization. The electrochemical behavior of OTC at the imprinted sensor was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), and amperometry. The molecularly imprinted sensor showed high selectivity and excellent stability toward OTC. The linear range was from 3.0 × 10?8 to 8.0 × 10?5 mol/L, with a limit of detection (LOD) of 2.7 × 10?8 mol/L (S/N = 3). The developed sensor showed good recovery in spiked samples analysis.  相似文献   

3.
An acetylcholinesterase (AChE) biosensor was constructed based on gold nanoparticles (AuNPs) using electroless plating on vertical nitrogen-doped single-walled carbon nanotubes (VNSWCNTs) for detecting organophosphorus pesticides (OPs). AChE was immobilised on AuNPs via Au–S bonding, and VNSWCNTs were produced by spontaneous chemical adsorption of NSWCNTs on gold electrode, also via Au–S bonding. This modified electrode exhibited excellent electron transfer capacity due to the synergy between AuNPs and VNSWCNTs. The developed biosensor showed good linear relations at concentrations of 10?5 – 1 ppb, and the detection limits were 3.04 × 10?6 ppb for methyl parathion, 1.96 × 10?6 ppb for malathion and 2.06 × 10?6 ppb for chlorpyrifos, respectively. The AChE biosensor revealed satisfactory stability, excellent sensitivity and good repeatability. These results suggest that this biosensor has good application prospects and can function as a sensitive device in OPs analysis.  相似文献   

4.
A novel enzyme-free electrochemical sensor for H2O2 was fabricated by modifying an indium tin oxide (ITO) support with (3-aminopropyl) trimethoxysilane to yield an interface for the assembly of colloidal gold. Gold nanoparticles (AuNPs) were then immobilized on the substrate via self-assembly. Atomic force microscopy showed the presence of a monolayer of well-dispersed AuNPs with an average size of ~4 nm. The electrochemical behavior of the resultant AuNP/ITO-modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. This non-enzymatic and mediator-free electrode exhibits a linear response in the range from 3.0?×?10?5 M to 1.0?×?10?3 M (M?=?mol?·?L?1) with a correlation coefficient of 0.999. The limit of detection is as low as 10 nM (for S/N?=?3). The sensor is stable, gives well reproducible results, and is deemed to represent a promising tool for electrochemical sensing.
Figure
AuNPs/ITO modified electrode prepared by self-assembly method exhibit good electrocatalytic activity towards enzyme-free detection H2O2. The linear range of typical electrode is between 3.0?×?10?5 M and 1.0?×?10?3 M with a correlation coefficient of 0.999 and the limit detection is down to 1.0?×?10?8 M.  相似文献   

5.
An enhanced oxime-based electrochemical sensor decorated with gold nanoparticles (AuNPs) and Co3O4 hexagonal nanosheets coupled with nitrogen-doped graphene has been developed for dimethoate determination dramatically. The introduction of Co3O4 hexagonal nanosheets tackles agglomeration of AuNPs and also enhances the sensitivity of electrochemical sensors greatly. The structure and properties of the synthesized composites were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy, confirming the successful modification of 2-(4-mercaptobutoxy)-1-naphthaldehyde oxime and Co3O4 supported AuNPs in a great experiment. In addition, differential pulse voltammetry further revealed that the developed electrochemical sensor exhibited excellent selectivity, sensitivity and stability in real samples analysis. Under optimal conditions, the modified sensor displayed a broad linear range from 1?×?10?14 M to 1?×?10?6 M with a fairly low detection limit of 8.4?×?10?14 M (S/N?=?3) and was expected to act as a superior method for dimethoate determination.  相似文献   

6.
Nano-sized noble metal nanoparticles doped dielectric composite films with large third-order nonlinear susceptibility due to the confinement and the enhancement of local field were considered to be applied for optical information processing devices, such as optical switch or all optical logical gates. In this paper, sol–gel titania thin films doped with gold nanoparticles (AuNPs, ~10 nm in average size) were prepared. AuNPs were firstly synthesized from HAuCl4 in aqueous solution at ~60 °C, using trisodium citrate as the reducing agent, polyvinylpyrrolidone as the stable agent; then the particle size and optical absorption spectra of the AuNPs in aqueous solutions were characterized by transmitting electron microscopy and UV–Vis–NIR spectrometry. Sol–gel 2AuNPs–100TiO2 (in %mol) thin films (5 layers, ~1 μm in thickness) were deposited on silica glass slides by multilayer dip-coating. After heat-treated at 300–1,000 °C in air, the AuNPs–TiO2 thin films were investigated by X-ray diffraction, scanning electron microscopy and atomic force microscopy. The nonlinear optical properties of the AuNPs–TiO2 thin films were measured with the Z-scan technique, using a femtosecond laser (200 fs) at the wavelength of 800 nm. The third-order nonlinear refractive index and nonlinear absorption coefficient of 2AuNPs–100TiO2 films were at the order of 10?12 cm2/W, and the order of 10?6 cm/W, respectively, and the third-order optical nonlinear susceptibility χ(3) was ~6.88 × 10?10 esu.  相似文献   

7.
This work was designed to develop an electrochemical sensor based on molecular imprinted polyaniline membranes onto reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) modified glassy carbon (GC) electrode for dapsone (DDS) determination. The prepared RGO/AuNPs/PANI‐MIPs nanocomposite was characterized by Ultra‐Violet‐Visible (UV‐Vis), Fourier transform infrared spectroscopy (FT‐IR) and scanning electronic microscopy (SEM) images. The feature of the imprinted electrode was evaluated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and impedance spectroscopy (IS). Throughout this study several analytical parameters, such as incubation time, pH value, concentration of monomer/template molecules and electro‐polymerization cycles were investigated. Under the optimized conditions, the experimental results showed best analytical performances for DDS detection with a sensitivity of 0.188 Ω/mol L?1, a linear range from 1.0×10?7 M to 1.0×10?3 M and a detection limit of 6.8×10?7 M. The bioanalytical sensor was applied to the determination of dapsone in real samples with high selectivity and recovery.  相似文献   

8.
A dimeric organophosphorus hydrolase (OPH; EC 3.1.8.1; 72 kDa) was isolated from wild-type bacteria, analyzed for its 16s rRNA sequence, purified, and immobilized on gold nanoparticles (AuNPs) to form the transducer part of a biosensor. The isolated strain was identified as Pseudomonas aeruginosa. The AuNPs were characterized by transmission electron microscopy and localized surface plasmon resonance. Covalent binding of OPH to the AuNPs was confirmed by spectrophotometry, enzymatic activity assays, and FTIR spectroscopy. Coumarin 1, a competitive inhibitor of OPH, was used as a fluorogenic probe. The bioconjugates quench the emission of coumarin 1 upon binding, but the addition of paraoxon results in an enhancement of fluorescence that is directly proportional to the concentration of paraoxon. The gold-OPH conjugates were then used to determine paraoxon in serum samples spiked with varying levels of paraoxon. The method works in the 50 to 1,050 nM concentration range, has a low standard deviation (with a CV of 5.7–11 %), and a detection limit as low as 5?×?10?11 M.
Figure
Coumarin 1, a competitive inhibitor of organophosphorus hydrolase, was used as a fluorogenic probe in the bioconjugates. The gold nanoparticles contained in the bioconjugates quench the emission of coumarin 1 upon binding, but the addition of paraoxon results in an enhancement of fluorescence leading to its detection.  相似文献   

9.
In this article, a highly sensitive electrochemical sensor is introduced for direct electro-oxidation of bisphenol A (BPA). The novel nanocomposite was prepared based on multi-walled carbon nanotube/thiol functionalised magnetic nanoparticles (Fe3O4-SH) as an immobilisation platform and gold nanoparticles (AuNPs) as an amplifying electrochemical signal. The chemisorbed AuNPs exhibited excellent electrochemical activity for the detection of BPA. Some analysing techniques such as Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and energy-dispersive x-ray diffraction exposed the formation of nanocomposite. Under optimum conditions (pH 9), the sensor showed a linear range between 0.002–240 μM, with high sensitivity (0.25 μA μM?1) along with low detection limit (6.73 × 10?10 M). Moreover, nanocomposites could efficiently decrease the effect of interfering agents and remarkably enhance the utility of sensor at detection of BPA in some real samples.  相似文献   

10.
In this study, the bark of an important medicinal plant, Indigofera aspalathoides is utilized as a bioreductant for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). The formation of nanoparticles was monitored, and the reaction parameters were optimized by UV–Vis spectroscopy. The attachment of biocomponents as stabilizer was proved employing Fourier‐transform infrared (FT‐IR) studies. Through transmission electron microscopy (TEM), the morphology was found to be predominantly spherical and a mixture of triangle and hexagon in the case of AgNPs and AuNPs, respectively. The crystallite size of AgNPs and AuNPs was affirmed through X‐ray diffraction (XRD) studies using Sherrer formula as 22.03 and 47.70 nm, respectively. DPPH method was adopted to analyse the free‐radical quenching ability, and the AgNPs, AuNPs and extract showed inhibition of 76%, 89% and 59% at a concentration of 200 μg ml?1, and the corresponding IC50 values were 86.49, 55.20 and 149.19 μg ml?1. The binding of nanoparticles to calf‐thymus DNA (CT‐DNA) was through groove and the high binding constants (8.49 × 106 M?1 and 2.34 × 107 M?1 for AgNPs and AuNPs) point out the potential of these nanoparticles as curative drugs. The MTT assay showed that AgNPs were 100% toxic, and the low IC50 value suggests that this can be used in the medicinal field as a safe drug.  相似文献   

11.
Abstract

There is an increasing need for sensitive/selective determination of explosive traces in soil and post-blast debris for environmental and criminal investigations. A colorimetric sensor was developed to detect and quantify trinitrotoluene (TNT) and tetryl by the use of surfactant-stabilized and dithiocarbamate-functionalized gold nanoparticles (AuNPs). The sensor was manufactured by modifying the nanoparticles with the cationic surfactant cetyl trimethyl ammonium bromide and incorporating diethyldithiocarbamate (DDTC) in the AuNPs synthesis. DDTC firmly bound to AuNPs may show charge-transfer interactions with the —NO2 groups of the analytes, and a color change proportional to analyte concentration accompanied the agglomeration of nanoparticles, at which the absorbances were recorded at 534?nm and 458?nm for TNT and tetryl, respectively. Although the limit of detection was 8?mgL?1 (3.52?×?10?5?molL?1) for TNT and 0.8?mgL?1 (2.78?×?10?6?molL?1) for tetryl, providing moderate sensitivity, the cost was greatly reduced compared to those of other thiol-functionalized AuNPs sensors. Possible interferences of other energetic substances in synthetic mixtures, of camouflage materials used in passenger belongings (e.g., detergent, sugar, caffeine, and paracetamol) and common soil ions were also examined. The method was statistically validated against a reference gas chromatography/mass spectrometry method. This sensor may pave the way for the manufacture of novel low-cost nitroaromatic explosive sensors made of DDTC-based pesticides.  相似文献   

12.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

13.
An electrochemical sensor for amoxicillin (AMX) detection based on reduced graphene oxide (RGO), molecular imprinted overoxidized polypyrrole (MIOPPy) modified with gold nanoparticles (AuNPs) is described in this work. The electrochemical behavior of the imprinted and non‐imprinted polymer (NIP) was carried out by cyclic voltammetry (CV) and impedance spectroscopy (IS). The structure and morphology of the prepared MIP sensor were characterized by scanning electron microscopy (SEM), UV‐Visible, Fourier transform infrared spectroscopy (FTIR) and its experimental parameters such as monomer and template concentration, pH buffer solution, incubation time of AMX and AuNPs, scan rate as well as electropolymerization scan cycles were optimized to improve the performance of the sensor. The peak current obtained at the MIP electrode was proportional to the AMX concentration in the range from 10?8 to 10?3 mol L?1 with a detection limit and sensitivity of 1.22 10?6 mol L?1 (Signal to noise ratio=3) and 2.52×10?6 μAmol?1 L, respectively. It was also found that this sensor exhibited reproducibility and excellent selectivity against molecules with similar chemical structures. Besides, the analytical application of the AMX sensor confirms the feasibility of AMX detection in milk and human serum.  相似文献   

14.
A gold nanoparticles (AuNPs) modified indium tin oxide (ITO) film coated glass electrode was prepared via a novel electrochemical deposition technique. The UV‐visible spectrum and SEM indicated that the AuNPs on ITO electrode surface were spherical shape and quite symmetric distributed. The modified electrode exhibited excellent catalytic activity for the oxidation of morphine (MO). At optimal experimental condition, the oxidation current was responsive with the MO concentrations ranging from 8.0×10?7 to 1.6×10?5 M, the detection limit was 2.1×10 –7 M. The modified electrode also exhibited high stability and reproducibility. The average recoveries of detection MO in human urine were ranged between 91.95% and 92.23%, and the RSD was less than 3.68% (n=5).  相似文献   

15.
A fast adsorptive stripping voltammetric procedure for simultaneous determination of Ni(II) and Co(II) in the presence of nioxime as a complexing agent at an in situ plated lead film electrode was described. The time of determination of these ions was shortened due to the application of gold as a substrate for lead film. At gold substrate lead film formation and accumulation of Ni(II) and Co(II) complexes with nioxime proceeds simultaneously. To obtain a stable signals for both ions a simple procedure of activation of the electrode was proposed. Calibration graphs for an accumulation time of 20 s were linear from 5×10?9 to 1×10?7 mol L?1 and from 5×10?10 to 1×10?8 mol L?1 for Ni(II) and Co(II), respectively. The procedure with the application of a lead film electrode on a gold substrate was validated in the course of Ni(II) and Co(II) determination in certified reference materials.  相似文献   

16.
Wei WEI  Shou-Guo WU 《分析化学》2019,47(2):e19014-e19020
In this work, a gold nanoparticles/graphitizing carbon felt electrode (AuNPs/GCFE) was fabricated and a disposable sensor was thus fabricated to detect nitrite quickly and conveniently. The kinetic parameters of the electrode were studied in phosphate buffer solution (PBS). Under the optimal conditions, by using cyclic voltammetry, the oxidation peak current was linear with the concentration of nitrite in the range from 1.00 × 10?6 M to 3.35 × 10?3 M, with a detection limit of 9.50 × 10?7 M (3S/k). The influence of various anions on nitrite detection was studied, and the results showed that the fabricated sensor had good specificity toward nitrite.  相似文献   

17.
Yazhen Wang 《Mikrochimica acta》2011,172(3-4):419-424
The electrochemistry of uric acid at a gold electrode modified with a self-assembled film of L-cysteine was studied by cyclic voltammetry and differential pulse voltammetry. Compared to the bare gold electrode, uric acid showed better electrochemical response in that the anodic peak current is stronger and the peak potential is negatively shifted by about 100 mV. The effects of experimental conditions on the oxidation of uric acid were tested and a calibration plot was established. The differential pulse response to uric acid is linear in the concentration range from 1.0?×?10?6 to ~?1.0?×?10?4 mol?L?1 (r?=?0.9995) and from 1.0?×?10?4 to ~?5.0?×?10?4 mol?L?1 (r?=?0.9990), the detection limit being 1.0?×?10?7 mol?L?1 (at S/N?=?3). The high sensitivity and good selectivity of the electrode was demonstrated by its practical application to the determination of uric acid in urine samples.
Cyclic voltammograms of UA at the bare electrode (a,b) and the L-Cys/Au electrode (c,d,e) in HAc-NaAc buffer containing different concentrations of UA. (a,c): blank; (b, d): 2.0?×?10?5 mol?L?1; (e) 4.0?×?10?5 mol?L?1. Scan rate: 100 mV?s?1  相似文献   

18.
A novel [Ru(bpy)2(dcbpy)NHS] labeling/aptamer‐based biosensor combined with gold nanoparticle amplification for the determination of lysozyme with an electrochemiluminescence (ECL) method is presented. In this work, an aptamer, an ECL probe, gold nanoparticle amplification, and competition assay are the main protocols employed in ECL detection. With all the protocols used, an original biosensor coupled with an aptamer and [Ru(bpy)2(dcbpy)NHS] has been prepared. Its high selectivity and sensitivity are the main advantages over other traditional [Ru(bpy)3]2+ biosensors. The electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) characterization illustrate that this biosensor is fabricated successfully. Finally, the biosensor was applied to a displacement assay in different concentrations of lysozyme solution, and an ultrasensitive ECL signal was obtained. The ECL intensity decreased proportionally to the lysozyme concentration over the range 1.0×10?13–1.0×10?8 mol L?1 with a detection limit of 1.0×10?13 mol L?1. This strategy for the aptasensor opens a rapid, selective, and sensitive route for the detection of lysozyme and potentially other proteins.  相似文献   

19.
Enzyme-free amperometric ultrasensitive determination of hydrogen peroxide (H2O2) was investigated using a Prussian blue (PB) film-modified gold nanoparticles (AuNPs) graphite–wax composite electrode. A stable PB film was obtained on graphite surface through 2-aminoethanethiol (AET)-capped AuNPs by a simple approach. Field emission scanning electron microscope studies results in formation of PB nanoparticle in the size range of 60–80 nm. Surface modification of PB film on AET–AuNPs–GW composite electrode was confirmed by Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy studies. Highly sensitive determination of H2O2 at a peak potential of ?0.10 V (vs. SCE) in 0.1 M KCl PBS, pH?=?7.0) at a scan rate of 20 mVs?1 with a sensitivity of 23.58 μA/mM was observed with the modified electrode using cyclic voltammetry. The synergetic effect of PB film with AuNPs has resulted in a linear range of 0.05 to 7,800 μM with a detection limit of 0.015 μM for H2O2 detection with the present electrode. Chronoamperometric studies recorded for the successive additions of H2O2 with the modified electrode showed an excellent linearity (R 2?=?0.9932) in the range of 4.8?×?10?8 to 7.4?×?10?8 M with a limit of detection of 1.4?×?10?8 M. Selective determination of H2O2 in presence of various interferents was successfully demonstrated. Human urine samples and stain remover solutions were also investigated for H2O2 content.  相似文献   

20.
《Analytical letters》2012,45(18):2697-2706
This paper reports a core-shell nanoparticle system coated on the carbon paste electrode (CPE) for determination of hydrogen peroxide. The amino-functionalized shell-magnetic core nanoparticles have been proven to be an effective material for Hb immobilization. The core-shell nanoparticle system was constructed by immobilizing hemoglobin (Hb) on amino-functionalized shell@magnetic core composite nanoparticles (NH2-SiO2-CoFe2O4) with the bridge of gold nanoparticles (AuNPs). Electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry were used to characterize the obtained biosensor. The Hb/AuNPs/NH2-SiO2-CoFe2O4/CPE showed a linear range from 1.9 × 10?6 to 4.6 × 10?3 M, with a detection limit of 6.3 × 10?7 M (S/N = 3) under the optimized experimental conditions. A good affinity was shown due to the small apparent Michaelis–Menten constant of 2.68 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号