首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composites of (001)‐face‐exposed TiO2 ((001)‐TiO2) and CuO were synthesized in water vapor environment at 250°C with various Cu/Ti molar ratios (RCu/Ti). The resulting CuO/(001)‐TiO2 composites were characterized using a variety of techniques. The synthesis under high‐temperature vapor allows close contact between CuO and (001)‐TiO2, which results in the formation of heterojunctions, as evidenced by the shift of valence band maximum towards the forbidden band of TiO2. An appropriate ratio of CuO can enhance the absorption of visible light and promote the separation of photogenerated carriers, which improve the photocatalytic performance. The degradation rate constant Kapp increased from 5.5 × 10?2 to 8.1 × 10?2 min?1 for RCu/Ti = 0.5. Additionally, the results showed that superoxide radicals (?O2?) play a major role in the photocatalytic degradation of methylene blue.  相似文献   

2.
The mesoporous titanium dioxide (MTiO2) photocatalysts co‐doped with Fe and H3PW12O40 were synthesized by template method using tetrabutyl titanate (Ti(OC4H9)4), Fe(NO3)k39H2Oand H3PW12O40 as precursors and Pluronic P123 as template. The as‐prepared photocatalyst was characterized by N2 adsorption‐desorption measurements, X‐ray diffraction (XRD), scanning electron microscopy (SEM) and UV‐vis adsorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl blue (MB) (50 mg/L) in an aqueous solution. The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of ca. 10 nm with high surface area of ca. 150 m2/g. The results of MB photodecomposition showed that co‐doped mesoporous TiO2 exhibited higher photocatalytic activities than un‐doped, single‐doped mesoporous TiO2 under UV and visible light irradiation. It was shown that the co‐doped MTiO2 could be activated by visible light and could thus be used as an effective catalyst in photo‐oxidation reactions. The synergistic effect of Fe and H3PW12O40 co‐doping played an important role in improving the photocatalytic activity.  相似文献   

3.
《中国化学》2018,36(6):538-544
Bi‐ and Y‐codoped TiO2 photocatalysts were synthesized through a sol‐gel method, and they were applied in the photocatalytic reduction of CO2 to formic acid under visible light irradiation. The results revealed that, after doping Bi and Y, the surface area of TiO2 was increased from 5.4 to 93.1 m2/g when the mole fractions of doping Bi and Y were 1.0% and 0.5%, respectively, and the lattice structures of the photocatalysts changed and the oxygen vacancies on the surface of the photocatalysts formed, which would act as the electron capture centers and slow down the recombination of photo‐induced electron and hole. The photocurrent spectra also proved that the photocatalysts had better electronic transmission capacities. The HCOOH yield in CO2 photocatalytic reduction was 747.82 μmol/gcat by using 1% Bi‐0.5% Y‐TiO2 as a photocatalyst. The HCOOH yield was 1.17 times higher than that by using 1% Bi‐TiO2, and 2.23 times higher than that by using pure TiO2. Furthermore, the 1% Bi‐0.5% Y‐TiO2 showed the highest apparent quantum efficiency (AQE) of 4.45%.  相似文献   

4.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

5.
采用溶剂热法制备了三维花状CeO2/TiO2异质结光催化剂,然后以甲基橙(MO)为模拟有机污染物,在氙灯照射下考察了其光催化活性。结果表明,花状结构由纳米片和纳米颗粒复合而成,纳米片上均匀地附着CeO2颗粒。Ce/Ti的物质的量之比(nCe/nTi)和溶剂热时间影响异质结的光催化性能,当nCe/nTi=0.1、溶剂热时间为6 h时,CeO2/TiO2的光催化活性达到最佳,氙灯照射50 min的降解率达95%,光催化活性优于纯TiO2,这主要是CeO2和TiO2形成了异质结,有利于光生电子和空穴的分离。  相似文献   

6.
《中国化学会会志》2018,65(2):252-258
Constructing a porous structure in photocatalysts is an effective strategy for improving the photocatalytic activity because of its enhanced molecule transfer capability and light capturing efficiency. In this work, a hierarchical macro‐/mesoporous ZnS/TiO2 composite with macrochannels was successfully synthesized without using templates by the simple dropwise addition of an ethanol solution of tetrabutyl titanate and zinc acetate into a sodium sulfide aqueous solution, which was then calcined at 450°C. Compared with pure TiO2, the ordered porous ZnS/TiO2 composite exhibited an enhanced photocatalytic activity on methylene blue removal under UV‐light irradiation. The results indicate that the macro‐/mesoporous structure, the large specific surface area, and the heterostructure combination between ZnS and TiO2 play a synergistic effect on the enhanced photocatalytic activity via improving the light absorption and the diffusion of organic molecules, providing more reactive sites for the photocatalytic reaction and improving the separation of photogenerated electron–hole pairs, respectively. Radical trapping experiments demonstrated that holes (h+) and superoxide anion radicals (O2) play an important role in the photocatalytic oxidation process.  相似文献   

7.
The need for renewable energy focuses attention on hydrogen obtained by using sustainable and green methods. The sustainable compound glycerol can be used for hydrogen production by heterogeneous photocatalysis. A novel approach involves the promotion of the TiO2 photocatalyst with a binary combination of nitrogen and transition metal. We report the synthesis and spectroscopic characterization of the new N‐M‐TiO2 photocatalysts (M=none, Cr, Co, Ni, Cu), and the photocatalytic reforming of glycerol to hydrogen under ambient conditions and near‐UV or visible light versus benchmark P25 TiO2. In units of activity μmol m?2 h?1, N‐Ni‐TiO2 is five‐fold more active than P25, and N‐Cu‐TiO2 is 44‐fold more active. The photocatalytic activity of N‐M‐TiO2 increases from Cr to Co and Ni, whereas the photoluminescence decreases; the change in activity is due to the modulation of charge recombination.  相似文献   

8.
Present work mainly focuses on experimental investigation to improvement of hydrogen production by water photoelectrolysis. An experimental facility was designed and constructed for visible light photocatalysis. A series of N‐TiO2 photocatalysts impregnated with platinum on the surface of N‐TiO2 were prepared. Hydrogen production upon irradiating aqueous Pt/N‐TiO2 suspension with visible light was investigated. The shift in excitation wavelength of TiO2 was 380 nm improved the yield of hydrogen production by N‐TiO2 and Pt/N‐TiO2. We used a 400 W mercury arc lamp combined with a 400 nm cutoff filter eliminating all the wavelengths under 400 nm. Pt/N‐TiO2 material was characterized with TPR, reflective UV/Visible spectroscopy and TEM. The best hydrogen production rate obtained for this setup for N/Ti = 10, 0.05 wt% Pt/N‐TiO2, through water splitting was about 772 μmolh?1g?1.  相似文献   

9.
Nitrogen-doped TiO2 nanoparticle photocatalysts were obtained by an annealing method with gaseous ammonia and nitrogen. The influence of dopant N on the crystal structure was characterized by XRD, XPS, BET, TEM and UV-Vis spectra. The results of XRD indicate that, the crystal phase transforms from anatase to rutile structure gradually with increase of annealing temperature from 300 to 700 ℃. XPS studies indicate that the nitrogen atom enters the TiO2 lattice and occupies the position of oxygen atom. Agglomeration of particles is found in TEM images after annealing. BET results show that the specific surface areas of N-doped samples from 44.61 to 38.27 m2/g are smaller than that of Degussa TiO2. UV-Vis spectra indicate that the absorption threshold shifts gradually with increase of annealing temperature, which shows absorption in the visible region. The influence of annealing condition on the photocatalytic property has been researched over water decomposition to hydrogen, indicating that nitrogen raises the photocatalytic activity for hydrogen evolution, and the modified TiO2 annealed for 2 h at 400 ℃ under gas of NH3/N2 (V/V=1/2) mixture shows better efficiency of hydrogen evolution. Furthermore, the N-doped TiO2 nanoparticle catalysts have obvious visible light activity, evidenced by hydrogen evolution under visible light (λ>400 nm) irradiation. However, the catalytic activity under visible light irradiation is absent for Degussa as reference and the N-doped TiO2 annealed at 700 ℃.  相似文献   

10.
5‐Mono‐(2‐thienyl)‐10,15,20‐triphenyl porphyrin (H2MTP) and its Co(II), Cu(II), Zn(II) metalloporphyrins (CoMTP, CuMTP, ZnMTP) were synthesized and characterized spectroscopically. The corresponding Co(II), Cu(II), Zn(II) metalloporphyrins‐TiO2 photocatalysts were then prepared and characterized by means of scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), UV‐vis spectra and FT‐IR. The photocatalytic activities of these photocatalysts were investigated by testing the photodegradation of 4‐nitrophenol (4‐NP) in aqueous solution under irradiation with high‐pressure mercury lamp and metal halide lamp respectively. The results indicated that these metalloporphyrins greatly enhanced the photocatalytic efficiency of bare TiO2 in degradating the 4‐NP, and CuMTP‐TiO2 exhibited the highest photocatalytic activity of all photocatalysts. In addition, the first order rate constants of these photocatalytic reactions were calculated.  相似文献   

11.
The reduced graphene oxide‐Bi2WO6 (rGO‐BWO) photocatalysts with the different RF/O values (molar ratio of the F molar mass and the O's molar mass of Bi2WO6) had been successfully synthesized via one‐step hydrothermal method. The F‐doped rGO‐BWO samples were characterized by X‐ray diffraction patterns (XRD), field‐emission scanning electron microscopy (FE‐ESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X‐ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The results indicate that F? ions had been successfully doped into rGO‐BWO samples. With the increasing of the RF/O values from 0 to 2%, the evident change of the morphology and the absorption edges of F‐doped rGO‐BWO samples and the photocatalytic activities had been enhanced. Moreover, the photocatalytic activity of F‐doped rGO‐BWO with RF/O = 0.05 were better than rGO‐BWO and the other F‐doped rGO‐BWO under 500 W Xe lamp light irradiation. The enhanced photocatalytic activity can be attributed to the morphology of the intact microsphere that signify the bigger specific surface area for providing more possible reaction sites for the adsorption–desorption equilibrium of photocatalytic reaction, the introduction of F? ions that may cause the enhancement of surface acidity and creation of oxygen vacancies under visible light irradiation, the narrower band gap which means needing less energy for the electron hole pair transition.  相似文献   

12.
A series of tungsten‐doped Titania photocatalysts were synthesized using a low‐temperature method. The effects of dopant concentration and annealing temperature on the phase transitions, crystallinity, electronic, optical, and photocatalytic properties of the resulting material were studied. The X‐ray patterns revealed that the doping delays the transition of anatase to rutile to a high temperature. A new phase WyTi1‐yO2 appeared for 5.00 wt% W‐TiO2 annealed at 900 °C. Raman and diffuse reflectance UV–Vis spectroscopy showed that band gap values decreased slightly up to 700 °C. X‐ray photoelectron spectroscopy showed that surface species viz. Ti3+, Ti4+, O2?, oxygen‐vacancies, and adsorbed OH groups vary depending on the preparation conditions. The photocatalytic activity was evaluated via the degradation of methylene blue using LED white light. The degradation rate was affected by the percentage of dopants. The best photocatalytic activity was achieved with the sample labeled 5.00 wt% W‐TiO2 annealed at 700 °C.  相似文献   

13.
The excellent photocatalytic hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with NaBH4 in the aqueous medium is still a big challenge. Herein, we report a facile one-pot evaporation-induced self-assembly (EISA) method to synthesize a series of CuO/TiO2 nanocomposites. The as-synthesized CuO/TiO2 photocatalysts exhibit remarkable catalytic activity under direct sunlight in selective hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) due to the synergistic interaction of guest copper nanoparticles with host titanium dioxide (TiO2) species. Especially, 5 wt% CuO/TiO2 nanocomposite revealed superior reaction rate constant (k) value (0.306 min−1) when compared to 3 wt% CuO/TiO2 (0.192 min−1) and 7 wt% CuO/TiO2 (0.240 min−1). Moreover, several characterization techniques (XRD, TEM, N2 adsorption–desorption isotherm, DRS, and XPS) were executed to deeply investigate the effect of copper content on the bulk and interfacial properties of the catalysts. The characterization results proved that the superior photocatalytic hydrogenation over 5 wt% CuO/TiO2 catalyst can be ascribed to moderate CuO loading as well as even dispersion of CuO species on the surface of active TiO2 host, which can largely improve the light absorption ability within visible light region. Besides, the 5 wt% CuO/TiO2 catalyst exhibits remarkable recyclability and durability, retaining its superior activity (above 95%) up to several repeating cycles, proving its practical applicability for hydrogenation reactions at domestic and industrial levels.  相似文献   

14.
以磁性CoFe2O4为核,采用改进的溶胶-凝胶法,制备了磁性TiO2/CoFe2O4纳米复合光催化材料.利用VSM(振动样品磁强计)技术对其磁性能进行了研究,结果表明:由该法所得的TiO2/CoFe2O4纳米复合光催化材料的饱和磁化强度虽稍弱于纯CoFe2O4纳米材料,但其矫顽力则优于CoFe2O4.TEM、XRD、UV-Vis等的结果表明,该纳米复合材料中的TiO2为锐钛矿结构;与TiO2相比,纳米复合材料对光的吸收拓展到了整个紫外-可见区,且吸收强度大大增强.对染料废水光催化降解的模拟研究表明,该复合材料在紫外光下,6 h可以使亚甲基蓝染料溶液的脱色率达95%,且重复使用3次时染料溶液的脱色率仍能保持在90%,明显优于纯TiO2.  相似文献   

15.
In this work, the photocatalytic activity of the synthesized graphene oxide (GO)‐Fe3O4/TiO2 mesoporous photocatalysts was evaluated using chlorpyrifos (CP) as a contaminant. The nano‐photocatalyst was characterized by X‐ray diffraction, field emission scanning electron microscopy with energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, and specific surface area by the Brunauer–Emmett–Teller method. Using visible light, the GO‐Fe3O4/TiO2 mesoporous photocatalyst was investigated on the degradation of CP pesticide. The GO‐Fe3O4/TiO2 photocatalyst displayed a good photocatalytic activity, which was achieving 97% of CP degradation after 60 min. Finally, experiments were performed to evaluate GO‐Fe3O4/TiO2 mesoporous nanocatalyst activity on repeated applications; after several uses, its photocatalytic activity was retained, which indicated stability.  相似文献   

16.
Mesoporous RuO2–TiO2 nanocomposites at different RuO2 concentrations (0–10 wt %) are prepared through a simple one‐step sol–gel reaction of tetrabutyl orthotitanate with ruthenium(III) acetylacetonate in the presence of an F127 triblock copolymer as structure‐directing agent. The thus‐formed RuO2–TiO2 network gels are calcined at 450 °C for 4 h leading to mesoporous RuO2–TiO2 nanocomposites. The photocatalytic CH3OH oxidation to HCHO is chosen as the test reaction to examine the photocatalytic activity of the mesoporous RuO2–TiO2 nanocomposites under UV and visible light. The photooxidation of CH3OH is substantially affected by the loading amount and the degree of dispersion of RuO2 particles onto the TiO2, which indicates the exclusive effect of the RuO2 nanoparticles on this photocatalytic reaction under visible light. The measured photonic efficiency ξ=0.53 % of 0.5 wt % RuO2–TiO2 nanocomposite for CH3OH oxidation is maximal and the further increase of RuO2 loading up to 10 wt % gradually decreases this value. The cause of the visible‐light photocatalytic behavior is the incorporation of small amounts of Ru4+ into the anatase lattice. On the other hand, under UV light, undoped TiO2 shows a very good photonic efficiency, which is more than three times that for commercial photocatalyst, P‐25 (Evonik–Degussa); however, addition of RuO2 suppresses the photonic efficiency of TiO2. The proposed reaction mechanism based on the observed behavior of RuO2–TiO2 photocatalysts under UV and visible light is explored.  相似文献   

17.
A series of Ag‐enhanced TiO2–x/C composites (Ag/TiO2–x/C composites) with metal‐organic frameworks (MOFs) as precursors were prepared, and their photocatalytic activities were evaluated by the UV‐light driven photodegradation behaviors of methyl blue (MB). The as‐obtained samples were characterized by several techniques such as SEM, XRD, N2‐adsorption, XPS, UV/Vis spectrophotometry and UV/Vis diffuse‐reflectance spectra. The best photocatalytic performance was achieved in Ag/TiO2–x/C composite pyrolyzed at 1000 °C (ATC‐P10) due to rapid capture of electrons caused by silver doping, higher density of TiO2–x lattice oxygen vacancies for better trapping of electrons, and high surface area due to reduction and evaporation of metallic Zn. No obvious deactivation was observed after 10 cycles of UV‐light degradation of MB under the same experimental conditions. This report reveals a new approach to prepare stable and highly efficient UV‐light‐driven photocatalysts for organic pollutants in water.  相似文献   

18.
Natural zeolite supported nano TiO2 photocatalysts were prepared by a modified electrostatic self‐assembly (ESA) method. First, γ‐mercaptopropyltrimethoxysilane with sulfhydryl (―SH) functional groups was modified on the zeolite powders by using a ‘dry process’. Second, silane with ―SH functional groups was oxidized to sulfonate (―SO3H) groups by using a hydrogen peroxide/glacial acetic acid mixed solution, and the surface of ―SO3H silane–zeolite was electronegative charged due to the ionization of ―SO3H. Third, the hydrolytic titanium polycation from TiCl4 solution assembled onto the electronegative charged zeolite under electrostatic attraction in the reaction solutions. Finally, zeolite supported nano TiO2 photocatalysts can be obtained after the above compounds calcined at certain temperature. The samples were characterized by X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface areas, Fourier transform infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS) and X‐ray fluorescence (XRF). The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in aqueous solution. The results showed that ESA method effectively improved the composite efficiency of zeolite with TiO2. The photocatalysts prepared by ESA method exhibited higher photocatalytic and recycling activities than that of traditional method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A Ga2O3–TiO2 photocatalyst was synthesized by a mechanomixing method followed by a sonication technique using different amplitudes of sonication (0%, 25%, 50%, and 75% of 20 kHz). The prepared photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared, Brunauer–Emmett–Teller (BET) surface area (SBET), zeta potential, and optical techniques. Ga2O3–TiO2 exhibited an excellent photocatalytic activity for Rhodamine B (RhB) dye degradation under UV irradiation. The RhB degradation rate rose linearly with the increase of sonication amplitude. The photodegradation rate (k) of the synthesized samples was calculated according to the Langmuir–Hinshelwood kinetic expression. It reached a maximum of 5.25 × 10−2 min−1 with R2 of 0.99 for Ga2O3–TiO2 (75%) photocatalysts. The main reactive species were detected through radical scavenging experiments. The formation of hole reactive species is the rate-determining step in the case of Ga2O3–TiO2 (75%) photocatalysts.  相似文献   

20.
The photocatalytic activity of TiO2 nanoparticles (nano‐TiO2) and its hybrid with SiO2 (nano‐TiO2–SiO2) for degradation of some organic dyes on cementitious materials was studied in this work. Nanohybrid photocatalysts were prepared using an inorganic sol–gel precursor and then characterized using XRD, SEM and UV–Vis. The grain sizes were estimated by Scherrer's equation to be around 10 nm. Then, a thin layer was applied to Portland cement concrete (PCC) blocks by dipping them into nano‐TiO2 and nano‐TiO2–SiO2 solution. The efficiency of coated PCC blocks for the photocatalytic decomposition of two dyes, Malachite Green oxalate (MG) and Methylene Blue (MB), was examined under UV and visible irradiation and then monitored by the chemical oxygen demand tests. The results showed that more than 80% and 92% of MG and MB were decomposed under UV–Vis irradiation using blocks coated with nano‐TiO2–SiO2. TiO2/PCC and TiO2–SiO2/PCC blocks showed a significant ability to oxidize dyes under visible and UV lights and TiO2–SiO2/PCC blocks require less time for dye degradation. Based on these results, coated blocks have increased photocatalytic activity which can make them commercially accessible photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号