首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A short laser pulse in wide range of wavelengths, from infrared to X-ray, disturbs electron–ion equilibrium and increases pressure in a heated layer. The case where the pulse duration τ L is shorter than acoustic relaxation time t s is considered in the paper. It is shown that this short pulse may cause thermomechanical phenomena such as spallative ablation regardless of wavelength. While the physics of electron–ion relaxation strongly depends on wavelength and various electron spectra of substances: there are spectra with an energy gap in semiconductors and dielectrics opposed to gapless continuous spectra in metals. The paper describes entire sequence of thermomechanical processes from expansion, nucleation, foaming, and nanostructuring to spallation with particular attention to spallation by X-ray pulse.  相似文献   

2.
Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2–12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.  相似文献   

3.
Fundamental physical phenomena in metals irradiated by ultrashort laser pulses with absorbed fluences higher than few tens of mJ/cm2 are investigated. For those fluences, laser‐produced electron distribution function relaxes to equilibrium Fermi distribution with electron temperature Te within a short time of 10‐100 fs. Because the electron subsystem has Te highly exceeding much the ion subsystem temperature Ti the well‐known twotemperature hydrodynamic model (2T‐HD) is used to evaluate heat propagation associated with hot conductive electron diffusion and electron‐ion energy exchange. The model coefficients of electron heat conductivity κ (?, Te, Ti) and electron‐ion coupling parameter α (?, Te) together with 2T equation of state E (?, Te, Ti) and P (?, Te, Ti) are calculated. Modeling with 2T‐HD code shows transition of electron heat wave from supersonic to subsonic regime of prop‐agation. At the moment of transition the heat wave emits a compression wave moving into the bulk of met al. Nonlinear evolution of the compression wave after its separation from the subsonic heat wave till spallation of rear‐side layer of a film is traced in both 2T‐HD modeling and molecular dynamics (MD) simulation. For fluences above some threshold the nucleation of voids in frontal surface layer is initiated by strong tensile wave following the compression wave. If the absorbed fluence is ~30 % above the ablation threshold than void nucleation develops quickly to heavily foam the molten met al. Long‐term evolution of the metal foam including foam breaking and freezing is simulated. It is shown that surface nano‐structures observed in experiments are produced by very fast cooling of surface molten layer followed by recrystallization of supercooled liquid in disintegrating foam having complex geometry. Characteristic lengths of such surface nanostructures, including frozen pikes and bubbles, are of the order of thickness of molten layer formed right after laser irradiation. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
5.
Using a cylindrical Langmuir probe, the plasma properties (ion density, electron temperature, floating and plasma potentials) in a magnetron sputter source have been investigated, along one particular line‐of‐sight, but for different probe‐orientations with respect to the B‐field. The plasma in the region hosen for observation is haracterised by electrons, which are magnetised (Larmor radius rle < both the electron mean‐free‐path λe, and plasma extension L) and ions, which are not (their Larmor radius rI > L, λI). Through the development of a simple expression for the electron saturation current at different probe angles relative to the local B‐field, it is possible to correct for the diminished electron currents due to their restricted transport across the field. The results indicate that the measured ion density, electron temperature, floating and plasma potentials are unaffected by the probe orientation, however the electron saturation current is attenuated when the probe is aligned along the B‐field. A simple model for the collection of electrons indicates that classical electron diffusion may not operate in the magnetron, with cross‐field electron transport dominated by anomalous, possibly Bohm, diffusion.  相似文献   

6.
The general matrix theory of the photoelectron/fluorescence excitation in anisotropic multilayer films at the total reflection condition of X‐rays has been developed. In a particular case the theory has been applied to explain the oscillation structure of L2,3 XANES spectra for a SiO2/Si/SiO2/c‐Si sample in the pre‐edge region which has been observed by a sample current technique at glancing angles of synchrotron radiation. Remarkably the phase of the oscillations is reversed by a ~2° angle variation. The observed spectral features are found to be a consequence of waveguide mode creation in the middle layer of strained Si, which changes the radiation field amplitude in the top SiO2 layer. The fit of the data required the correction of the optical constants for Si and SiO2 near the Si L2,3‐edges.  相似文献   

7.
Combined quantum‐chemical and spectral studies of the features of electron transitions and absorption spectra of symmetrical and unsymmetrical polymethine dyes, derivatives of aminocoumarin, have been performed. It was established that the lowest two electron transitions are splitting transitions, involving solitonic level and two low positioned acceptor levels, in contrast to the cationic cyanine dyes, where two lowest transitions are connected with two splitting donor levels and solitonic level. The considerable interaction between two acceptor levels in symmetrical dyes provides an additional decrease of the first transition energy and hence leads to the relatively deep and intensive color, whereas the second transition with its negligible oscillator strength is practically unobserved. The higher electron transitions involve orbitals located mainly at the coumarin residue; the corresponding spectral bands appear in the short‐wavelength region. Introduction of dialkylamino group in coumarin heterocycle shifts bathochromically the long‐wavelength absorption band and considerably increases the intensity of S0S1 and S0S3 electron transitions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
We study theoretically the influence of light waves on the thermoelectric power under large magnetic field (TPM) for III‐V, ternary and quaternary materials, whose unperturbed energy‐band structures, are defined by the three‐band model of Kane. The solution of the Boltzmann transport equation on the basis of this newly formulated electron dispersion law will introduce new physical ideas and experimental findings in the presence of external photoexcitation. It has been found by taking n‐InAs, n‐InSb, n‐Hg1‐xCdxTe and n‐In1‐xGaxAsyP1‐y lattice matched to InP as examples that the TPM decreases with increase in electron concentration, and increases with increase in intensity and wavelength, respectively in various manners. The strong dependence of the TPM on both light intensity and wavelength reflects the direct signature of light waves that is in direct contrast as compared with the corresponding bulk specimens of the said materials in the absence of external photoexcitation. The rate of change is totally band‐structure dependent and is significantly influenced by the presence of the different energy‐band constants. The well‐known result for the TPM for nondegenerate wide‐gap materials in the absence of light waves has been obtained as a special case of the present analysis under certain limiting conditions and this compatibility is the indirect test of our generalized formalism. Besides, we have also suggested the experimental methods of determining the Einstein relation for the diffusivity:mobility ratio, the Debye screening length and the electronic contribution to the elastic constants for materials having arbitrary dispersion laws.  相似文献   

9.
Modifications of K‐line profiles due to a warm dense plasma environment are a suitable tool for plasma diagnostics. We focus on Si Kα emissions due to an electron transfer from 2P to 1S shell. Besides 2P fine structure effects we also consider the influence of excited and higher ionized emitters. Generally spoken, a plasma of medium temperature and high density (warm dense matter) is created from bulk Si the greater part of atoms is ionized. The high energy of Kα x‐rays is necessary to penetrate and investigate the Si sample. The plasma effect influences the many‐particle system resulting in an energy shift due to electron‐ion and electron‐electron interaction. In our work we focus on pure Si using LS coupling. Non‐perturbative wave functions are calculated as well as ionization energies, binding energies and relevant emission energies using the chemical ab initio code Gaussian 03. The plasma effect is considered within a perturbative approach to the Hamiltonian. Using Roothaan‐Hartree‐Fock wave functions we calculate the screening effect within an ion‐sphere model. The different excitation and ionization probabilities of the electronic L‐shell and M‐shell lead to a charge state distribution. Using this distribution and a Lorentz profile convolution with a Gaussian instrument function we calculate spectral line profiles depending on the plasma parameters. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Radiative recombination from band states is observed in amorphous As2S3. The spectral dependence of the radiation shows that recombination occurs before thermalization takes place.  相似文献   

11.
S L2,3 and L1 XANES of the polymorph minerals pyrite (FeS2) and marcasite (two different cleavage planes) were measured in total electron yield mode using synchrotron radiation. Small but distinct differences were found in the fine structure of these spectra. Calculations with the FEFF-8 code were performed to reproduce the experimental data. Ex situ UV–ozone oxidation of the samples reveals different reactivity. Sulphate was identified on the pyrite and one marcasite cleavage planes whereas the second plane normal to the first one oxidises with changing quanta of sulphate and sulphite.  相似文献   

12.
An X‐ray magnetic circular dichroism (XMCD) study performed at the Ho L2,3‐edges in Ho6Fe23 as a function of temperature is presented. It is demonstrated that the anomalous temperature dependence of the Ho L2‐edge XMCD signal is due to the magnetic contribution of Fe atoms. By contrast, the Ho L3‐edge XMCD directly reflects the temperature dependence of the Ho magnetic moment. By combining the XMCD at both Ho L2‐ and L3‐edges, the possibility of determining the temperature dependence of the Fe magnetic moment is demonstrated. Then, both μHo(T) and μFe(T) have been determined by tuning only the absorption L‐edges of Ho. This result opens new possibilities of applying XMCD at these absorption edges to obtain quantitative element‐specific magnetic information that is not directly obtained by other experimental tools.  相似文献   

13.
Coupling electron‐hole (e‐ h+) and electron‐ion plasmas across a narrow potential barrier with a strong electric field provides an interface between the two plasma genres and a pathway to electronic and photonic device functionality. The magnitude of the electric field present in the sheath of a low temperature, nonequilibrium microplasma is sufficient to influence the band structure of a semiconductor region in immediate proximity to the solid‐gas phase interface. Optoelectronic devices demonstrated by leveraging this interaction are described here. A hybrid microplasma/semiconductor photodetector, having a Si cathode in the form of an inverted square pyramid encompassing a neon microplasma, exhibits a photosensitivity in the ~420–1100 nm region as high as 3.5 A/W. Direct tunneling of electrons into the collector and the Auger neutralization of ions arriving at the Si surface appear to be facilitated by an n ‐type inversion layer at the cathode surface resulting from bandbending by the microplasma sheath electric field. Recently, an npn plasma bipolar junction transistor (PBJT), in which a low temperature plasma serves as the collector in an otherwise Si device, has also been demonstrated. Having a measured small signal current gain hfe as large as 10, this phototransistor is capable of modulat‐ing and extinguishing the collector plasma with emitter‐base bias voltages <1 V. Electrons injected into the base when the emitter‐base junction is forward‐biased serve primarily to replace conduction band electrons lost to the collector plasma by secondary emission and ion‐enhanced field emission in which ions arriving at the base‐collector junction deform the electrostatic potential near the base surface, narrowing the potential barrier and thereby facilitating the tunneling of electrons into the collector. Of greatest significance, therefore, are the implications of active, plasma/solid state interfaces as a new frontier for plasma science. Specifically, the PBJT provides the first opportunity to control the electronic properties of a material at the boundary of, and interacting with, a plasma. By specifying the relative number densities of free (conduction band) and bound (valence band) electrons at the base‐collector interface, the PBJT's emitter‐base junction is able to dictate the rates of secondary electron emission (including Auger neutralization) at the semiconductor‐plasma interface, thereby offering the ability to vary at will the effective secondary electron emission coefficient for the base surface (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Kinetic, spectral, intensity, angular, and polarization studies of resonant two-photon absorption (RTPA) in β-CdP2 have been carried out. RTPA was observed with 2.60 eV total energy of the two quanta. It was found that RTPA occurs through a real intermediated level which lies in the forbidden band at a depthE=0.86 eV. The transverse electron relaxation time during RTPA, the cross section for absorption of laser radiation quanta ind 3C transitions, the equilibrium population of thed centers forn type doped samples, and the RTPA constant were determined to be 4.3 · 1014 sec, 1.25 · 10−17 cm, 0.95, and 0.028 cm/MW respectively. Ukrainian State Pedagogical University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, Vol. 42, No. 1, pp. 21–26, January, 1999.  相似文献   

15.
Kinetic theory has been applied to study the damping characteristics of dust ion acoustic waves (DIAWs) in a dusty plasma comprising q‐non‐extensive distributed electrons and ions, while the dust particles are considered extensive following the Maxwellian velocity distribution function. It is found that the results of the three‐dimensional velocity distribution function are more accurate compared to the results of the one‐dimensional velocity distribution function. The numerical solution of the dispersion relation is carried out to study the effect of the non‐extensivity parameter q on the dispersion, the damping rate, and the range of the values of the normalized wavenumber ( k λD) for which the DIAWs are weakly damped. It is found that the change in the value of the electron non‐extensivity parameter qe has a minor effect on the dispersion, the damping rate, and the range of the values of the normalized wavenumber ( k λD) for which the DIAWs are weakly damped, while on the other hand, ion non‐extensivity parameter qi has a strong effect on these arguments. The effect of other parameters, such as the ratio of electron to ion number density and ratio of electron to ion temperature, on the damping characteristics of DIAWs is also highlighted.  相似文献   

16.
The thermalization length distribution of electrons over their kinetic energy in a conduction band is calculated on the basis of the data on the electron effective mass, density of states in conduction band, dielectric permittivity and energy of longitudinal optical phonons. The method of modeling of a recombinational luminescence intensity dependence on the nanoparticle size is proposed on the basis of the assumption that the contribution to a recombinational luminescence gives only those charge carriers which in the result of thermalization did not reach a near-surface layer of nanoparticles. Using such the approach the theoretical dependence of recombinational luminescence intensity on the nanoparticle size for LaPO4 and LuPO4 are calculated. The revealed correlation of experimental and theoretical dependences confirms that the commensurability of electron thermalization length with nanoparticle size is the main reason of the sharp decrease of X-ray excited luminescence intensity when the nanoparticle size decreases.  相似文献   

17.
Quinols, 1, are products of the hydration of O‐aryloxenium ions, 2, and N‐arylnitrenium ions, 3, and they are being investigated for medical uses. Under acidic conditions (pH 1–3) kinetics and products of Br trapping demonstrate that 1a, 4‐phenyl‐4‐hydroxy‐2,5‐cyclohexadienone, and 1b, 4‐p‐tolyl‐4‐hydroxy‐2,5‐cyclohexadienone, generate the corresponding oxenium ions 2a and 2b, respectively, as steady‐state intermediates. Formation and trapping of the oxenium ions occurs in competition with the acid catalyzed dienone–phenol rearrangement. Because oxenium ion formation is reversible, the ion can only be detected by trapping with a nucleophile. Br is an efficient trap under acidic conditions because, unlike N3, it is not protonated under those conditions. Attempts to detect the oxenium ions 2a and 2b at pH 4.6 and 7.1 with N3 were unsuccessful indicating that oxenium ion formation only occurs under acidic conditions. The oxenium ion 2c could not be detected under acidic conditions from the quinol 1c, 4‐(benzothiazol‐2‐yl)‐4‐hydroxy‐2,5‐cyclohexadienone, by Br trapping methods, even though this ion can be detected during hydrolysis of the corresponding ester, 4c. Although the benzothiazol‐2‐yl group is a resonance electron donor that is capable of stabilizing an O‐aryloxenium ion, it is also a strong inductive electron withdrawing group that hinders the formation of 2c from 1c by decreasing the extent of protonation of 1c to generate 1cH+ and by destabilizing the transition state for ionization of 1cH+. Generation of an oxenium ion from the corresponding quinol is feasible under acidic conditions as long as the 4‐substituent of the quinol is both a resonance and inductive electron donor. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
X‐ray absorption spectra calculated within an effective one‐electron approach have to be broadened to account for the finite lifetime of the core hole. For methods based on Green's function this can be achieved either by adding a small imaginary part to the energy or by convoluting the spectra on the real axis with a Lorentzian. By analyzing the Fe K‐ and L2,3‐edge spectra it is demonstrated that these procedures lead to identical results only for energies higher than a few core‐level widths above the absorption edge. For energies close to the edge, spurious spectral features may appear if too much weight is put on broadening via the imaginary energy component. Special care should be taken for dichroic spectra at edges which comprise several exchange‐split core levels, such as the L3‐edge of 3d transition metals.  相似文献   

19.
The nature of the optical absorption gap in NiO at 4.0 eV is investigated. It is found that this gap is due to a band to band transition, where an electron is taken out of the valence band and placed into the conduction band. The optical gap of 6.0 eV found in NiMgO is of a nature, where an electron is taken out of the oxygen 2p band and placed into the first affinity level of the Ni2+ ion (3d 8L»3d 9L–1). The impurity band created in Ni1–x Li x O by the Li ions is found 2.3 eV below the bottom of the conduction band in agreement with model predictions.  相似文献   

20.
Spin‐polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non‐polar band insulator SrTiO3. The structural relaxation at the interface turns out to depend systematically on the lattice mis‐ match. Charge transfer from the Heusler alloys (mainly the M 3d orbitals) to the Ti dxy orbitals of the TiO2 interface layer is found to gradually grow from M = Ti to Fe, resulting in an electron gas with increasing density of spin‐polarized charge carriers. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号