首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A coupled Lagrangian interface‐tracking and Eulerian level set (LS) method is developed and implemented for numerical simulations of two‐fluid flows. In this method, the interface is identified based on the locations of notional particles and the geometrical information concerning the interface and fluid properties, such as density and viscosity, are obtained from the LS function. The LS function maintains a signed distance function without an auxiliary equation via the particle‐based Lagrangian re‐initialization technique. To assess the new hybrid method, numerical simulations of several ‘standard interface‐moving’ problems and two‐fluid laminar and turbulent flows are conducted. The numerical results are evaluated by monitoring the mass conservation, the turbulence energy spectral density function and the consistency between Eulerian and Lagrangian components. The results of our analysis indicate that the hybrid particle‐level set method can handle interfaces with complex shape change, and can accurately predict the interface values without any significant (unphysical) mass loss or gain, even in a turbulent flow. The results obtained for isotropic turbulence by the new particle‐level set method are validated by comparison with those obtained by the ‘zero Mach number’, variable‐density method. For the cases with small thermal/mass diffusivity, both methods are found to generate similar results. Analysis of the vorticity and energy equations indicates that the destabilization effect of turbulence and the stability effect of surface tension on the interface motion are strongly dependent on the density and viscosity ratios of the fluids. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
A mass‐conserving Level‐Set method to model bubbly flows is presented. The method can handle high density‐ratio flows with complex interface topologies, such as flows with simultaneous occurrence of bubbles and droplets. Aspects taken into account are: a sharp front (density changes abruptly), arbitrarily shaped interfaces, surface tension, buoyancy and coalescence of droplets/bubbles. Attention is paid to mass‐conservation and integrity of the interface. The proposed computational method is a Level‐Set method, where a Volume‐of‐Fluid function is used to conserve mass when the interface is advected. The aim of the method is to combine the advantages of the Level‐Set and Volume‐of‐Fluid methods without the disadvantages. The flow is computed with a pressure correction method with the Marker‐and‐Cell scheme. Interface conditions are satisfied by means of the continuous surface force methodology and the jump in the density field is maintained similar to the ghost fluid method for incompressible flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A moment‐of‐fluid method is presented for computing solutions to incompressible multiphase flows in which the number of materials can be greater than two. In this work, the multimaterial moment‐of‐fluid interface representation technique is applied to simulating surface tension effects at points where three materials meet. The advection terms are solved using a directionally split cell integrated semi‐Lagrangian algorithm, and the projection method is used to evaluate the pressure gradient force term. The underlying computational grid is a dynamic block‐structured adaptive grid. The new method is applied to multiphase problems illustrating contact‐line dynamics, triple junctions, and encapsulation in order to demonstrate its capabilities. Examples are given in two‐dimensional, three‐dimensional axisymmetric (RZ), and three‐dimensional (XYZ) coordinate systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A hybrid phase field multiple relaxation time lattice Boltzmann method (LBM) is presented in this paper for simulation of multiphase flows with large density contrast. In the present method, the flow field is solved by a lattice Boltzmann equation. Concurrently, the interface of two fluids is captured by solving the macroscopic Cahn‐Hilliard equation using the upwind scheme. To be specific, for simulation of the flow field, an lattice Boltzmann equation (LBE) model developed in Shao et al. (Physical Review E, 89 (2014), 033309) for consideration of density contrast in the momentum equation is used. Moreover, in the present work, the multiple relaxation time collision operator is applied to this LBE to enable simulation of problems with large viscosity contrast or high Reynolds number. For the interface capturing, instead of solving another set of LBE as in many phase field LBMs, the macroscopic Cahn‐Hilliard equation is directly solved by using a weighted essentially non‐oscillatory scheme. In this way, the present hybrid phase field LBM shares full advantages of the phase field LBM while enhancing numerical stability. The ability of the present method to simulate multiphase flow problems with large density contrast is demonstrated by several numerical examples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The unstructured quadrilateral mesh‐based solution adaptive method is proposed in this article for simulation of compressible multi‐fluid flows with a general form of equation of state (EOS). The five equation model (J. Comput. Phys. 2002; 118 :577–616) is employed to describe the compressible multi‐fluid flows. To preserve the oscillation‐free property of velocity and pressure across the interface, the non‐conservative transport equation is discretized in a compatible way of the HLLC scheme for the conservative Euler equations on the unstructured quadrilateral cell‐based adaptive mesh. Five numerical examples, including an interface translation problem, a shock tube problem with two fluids, a solid impact problem, a two‐dimensional Riemann problem and a bubble explosion under free surface, are used to examine its performance in solving the various compressible multi‐fluid flow problems with either the same types of EOS or different types of EOS. The results are compared with those calculated by the following methods: the method with ROE scheme (J. Comput. Phys. 2002; 118 :577–616), the seven equation model (J. Comput. Phys. 1999; 150 :425–467), Shyue's fluid‐mixture model (J. Comput. Phys. 2001; 171 :678–707) or the method in Liu et al. (Comp. Fluids 2001; 30 :315–337). The comparisons for the test problems show that the proposed method seems to be more accurate than the method in Allaire et al. (J. Comput. Phys. 2002; 118 :577–616) or the seven‐equation model (J. Comput. Phys. 1999; 150 :425–467). They also show that it can adaptively and accurately solve these compressible multi‐fluid problems and preserve the oscillation‐free property of pressure and velocity across the material interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is to continue our previous work Niu (Int. J. Numer. Meth. Fluids 2001; 36 :351–371) on solving a two‐fluid model for compressible liquid–gas flows using the AUSMDV scheme. We first propose a pressure–velocity‐based diffusion term originally derived from AUSMDV scheme Wada and Liou (SIAM J. Sci. Comput. 1997; 18 (3):633—657) to enhance its robustness. The scheme can be applied to gas and liquid fluids universally. We then employ the stratified flow model Chang and Liou (J. Comput. Physics 2007; 225 :240–873) for spatial discretization. By defining the fluids in different regions and introducing inter‐phasic force on cell boundary, the stratified flow model allows the conservation laws to be applied on each phase, and therefore, it is able to capture fluid discontinuities, such as the fluid interfaces and shock waves, accurately. Several benchmark tests are studied, including the Ransom's Faucet problem, 1D air–water shock tube problems, 2D shock‐water column and 2D shock‐bubble interaction problems. The results indicate that the incorporation of the new dissipation into AUSM+‐up scheme and the stratified flow model is simple, accurate and robust enough for the compressible multi‐phase flows. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A multiphase flow model has been established based on a moving particle semi‐implicit method. A surface tension model is introduced to the particle method to improve the numerical accuracy and stability. Several computational techniques are employed to simplify the numerical procedure and further improve the accuracy. A particle fraction multiphase flow model is developed and verified by a two‐phase Poiseuille flow. The multiphase surface tension model is discussed in detail, and an ethanol drop case is introduced to verify the surface tension model. A simple dam break is simulated to demonstrate the improvements with various modifications in particle method along with a new boundary condition. Finally, we simulate several bubble rising cases to show the capacity of this new model in simulating gas–liquid multiphase flow with large density ratio difference between phases. The comparisons among numerical results of mesh‐based model, experimental data, and the present model, indicate that the new multiphase particle method is acceptable in gas–liquid multiphase fluids simulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We present a practical numerical framework for incompressible interfacial multiphase flows on unstructured grids with arbitrary and hybrid elements. The numerical framework is constructed by combining VPM (volume-average/point-value multi-moment) and UMTHINC (unstructured multi-dimensional tangent of hyperbola interface capturing) schemes. To facilitate accurate and reliable simulations for interfacial multiphase flows on arbitrary and hybrid unstructured grids, we have made the following major new efforts in this work. (1) UMTHINC scheme on prismatic and pyramidal elements to facilitate computations on hybrid arbitrary unstructured grids; (2) Consistent numerical formulation for mass and momentum transports to simulate multiphase flows of large density ratio; (3) Combined FVM-FEM for accurate solution to diffusion equation; (4) Pressure-projection formulation in consistent with the balanced-force model. Integrating all these numerical techniques effectively enhances the accuracy and robustness in interface capturing and numerical solution of multiphase fluid dynamics, which results in a numerical framework of great significance for practical applications. Numerical verifications have been carried out through benchmark tests ranging from surface tension dominant flows of small scale to large scale flows with violently-changing interfaces. Numerical results demonstrate that the present framework is robust with adequate accuracy for simulating multiphase flows in complex geometries.  相似文献   

9.
杨秋足  徐绯  王璐  杨扬 《力学学报》2019,51(3):730-742
多相流界面存在密度、黏性等物理场间断,直接采用传统光滑粒子水动力学(smoothedparticle hydrodynamics,SPH)方法进行数值模拟,界面附近的压力和速度存在震荡.一套基于黎曼解能够处理大密度比的多相流SPH计算模型被提出,该模型利用黎曼解在处理接触间断问题方面的优势,将黎曼解引入到SPH多相流计算模型中,为了能够准确求解多相流体物理黏性、减小黎曼耗散,对黎曼形式的SPH动量方程进行了改进,又将Adami固壁边界与黎曼单侧问题相结合来施加多相流SPH固壁边界,同时模型中考虑了表面张力对小尺度异相界面的影响,该模型没有添加任何人工黏性、人工耗散和非物理人工处理技术,能够反应多相流真实物理黏性和物理演变状态.采用该模型首先对三种不同粒子间距离散下方形液滴震荡问题进行了数值模拟,验证了该模型在处理异相界面的正确性和模型本身的收敛性;后又通过对Rayleigh--Taylor不稳定、单气泡上浮、双气泡上浮问题进行了模拟计算,结果与文献对比吻合度高,异相界面捕捉清晰,结果表明,本文改进的多相流SPH模型能够稳定、有效的模拟大密度比和黏性比的多相流问题.   相似文献   

10.
This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front‐tracking method. The velocity field is computed using a finite‐difference discretization of a modification of the Navier–Stokes equations. These equations together with the continuity equation are solved for the two‐dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, we assess several interface schemes for stationary complex boundary flows under the direct‐forcing immersed boundary‐lattice Boltzmann methods (IB‐LBM) based on a split‐forcing lattice Boltzmann equation (LBE). Our strategy is to couple various interface schemes, which were adopted in the previous direct‐forcing immersed boundary methods (IBM), with the split‐forcing LBE, which enables us to directly use the direct‐forcing concept in the lattice Boltzmann calculation algorithm with a second‐order accuracy without involving the Navier–Stokes equation. In this study, we investigate not only common diffuse interface schemes but also a sharp interface scheme. For the diffuse interface scheme, we consider explicit and implicit interface schemes. In the calculation of velocity interpolation and force distribution, we use the 2‐ and 4‐point discrete delta functions, which give the second‐order approximation. For the sharp interface scheme, we deal with the exterior sharp interface scheme, where we impose the force density on exterior (solid) nodes nearest to the boundary. All tested schemes show a second‐order overall accuracy when the simulation results of the Taylor–Green decaying vortex are compared with the analytical solutions. It is also confirmed that for stationary complex boundary flows, the sharper the interface scheme, the more accurate the results are. In the simulation of flows past a circular cylinder, the results from each interface scheme are comparable to those from other corresponding numerical schemes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is devoted to the numerical approximation of a hyperbolic non‐equilibrium multiphase flow model with different velocities on moving meshes. Such goal poses several difficulties. The presence of different flow velocities in conjunction with cell velocities poses difficulties for upwinding fluxes. Another issue is related to the presence of non‐conservative terms. To solve these difficulties, the discrete equations method (J. Comput. Phys. 2003; 186 (2):361–396; J. Fluid. Mech. 2003; 495 :283–321; J. Comput. Phys. 2004; 196 :490–538; J. Comput. Phys. 2005; 205 :567–610) is employed and generalized to the context of moving cells. The complementary conservation laws, available for the mixture, are used to determine the velocities of the cells boundaries. With these extensions, an accurate and robust multiphase flow method on moving meshes is obtained and validated over several test problems with exact or experimental solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
We present a simple and cost‐effective curvature calculation approach for simulations of interfacial flows on structured and unstructured grids. The interface is defined using volume fractions, and the interface curvature is obtained as a function of the gradients of volume fractions. The gradient computation is based on a recently proposed gradient recovery method that mimicks the least squares approach without the need to solve a system of equations and is quite easy to implement on arbitrary polygonal meshes. The resulting interface curvature is used in a continuum surface force formulation within the framework of a well‐balanced finite‐volume algorithm to simulate multiphase flows dominated by surface tension. We show that the proposed curvature calculation is at least as accurate as some of the existing approaches on unstructured meshes while being straightforward to implement on any mesh topology. Numerical investigations also show that spurious currents in stationary problems that are dependent on the curvature calculation methodology are also acceptably low using the proposed approach. Studies on capillary waves and rising bubbles in viscous flows lend credence to the ability of the proposed method as an inexpensive, robust, and reasonably accurate approach for curvature calculation and numerical simulation of multiphase flows.  相似文献   

14.
Surface tension plays a significant role at the dynamic interface of free‐surface flows especially at the microscale in capillary‐dominated flows. A model for accurately predicting the formation of two‐dimensional viscous droplets in vacuum or gas of negligible density and viscosity resulting from axisymmetric oscillation due to surface tension is solved using smoothed particle hydrodynamics composed of the Navier‐Stokes system and appropriate interfacial conditions for the free‐surface boundaries. The evolution of the droplet and its free‐surface interface is tracked over time to investigate the effects of surface tension forces implemented using a modified continuous surface force method and is compared with those performed using interparticle interaction force. The dynamic viscous fluid and surface tension interactions are investigated via a controlled curvature model and test cases of nonsteady oscillating droplets; attention is focused here on droplet oscillation that is released from an initial static deformation. Accuracy of the results is attested by demonstrating that (i) the curvature of the droplet that is controlled; (ii) uniform distribution of fluid particles; (iii) clean asymmetric forces acting on the free surface; and (iv) nonsteady oscillating droplets compare well with analytical and published experiment findings. The advantage of the proposed continuous surface force method only requires the use of physical properties of the fluid, whereas the interparticle interaction force method is restricted by the requirement of tuning parameters.  相似文献   

15.
A hybrid particle‐mesh method was developed for efficient and accurate simulations of two‐phase flows. In this method, the main component of the flow is solved using the constrained interpolated profile/multi‐moment finite volumemethod; the two‐phase interface is rendered using the finite volume particle (FVP) method. The effect of surface tension is evaluated using the continuum surface force model. Numerical particles in the FVP method are distributed only on the surface of the liquid in simulating the interface between liquid and gas; these particles are used to determine the density of each mesh grid. An artificial term was also introduced to mitigate particle clustering in the direction of maximum compression and sparse discretization errors in the stretched direction. This enables accurate interface tracking without diminishing numerical efficiency. Two benchmark simulations are used to demonstrate the validity of the method developed and its numerical stability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we present a model for the dynamics of particles suspended in two‐phase flows by coupling the Cahn–Hilliard theory with the extended finite element method (XFEM). In the Cahn–Hilliard model the interface is considered to have a small but finite thickness, which circumvents explicit tracking of the interface. For the direct numerical simulation of particle‐suspended flows, we incorporate an XFEM, in which the particle domain is decoupled from the fluid domain. To cope with the movement of the particles, a temporary ALE scheme is used for the mapping of field variables at the previous time levels onto the computational mesh at the current time level. By combining the Cahn–Hilliard model with the XFEM, the particle motion at an interface can be simulated on a fixed Eulerian mesh without any need of re‐meshing. The model is general, but to demonstrate and validate the technique, here the dynamics of a single particle at a fluid–fluid interface is studied. First, we apply a small disturbance on a particle resting at an interface between two fluids, and investigate the particle movement towards its equilibrium position. In particular, we are interested in the effect of interfacial thickness, surface tension, particle size and viscosity ratio of two fluids on the particle movement towards its equilibrium position. Finally, we show the movement of a particle passing through multiple layers of fluids. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
We present a γ‐model BGK scheme for the numerical simulation of compressible multifluids. The scheme is based on the incorporation of a conservative γ‐model scheme given in (J. Comput. Phys. 1996; 125 :150–160) into the gas kinetic BGK scheme (J. Comput. Phys. 1993; 109 :53–66, J. Comput. Phys. 1994; 114 :9–17), and is simple to implement. Several numerical examples presented in this paper validate the scheme in the application of compressible multimaterial flows. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A Q2Q1 (quadratic velocity/linear pressure) finite element/level‐set method was proposed for simulating incompressible two‐phase flows with surface tension. The Navier–Stokes equations were solved using the Q2Q1 integrated FEM, and the level‐set variable was linearly interpolated using a ‘pseudo’ Q2Q1 finite element when calculating the density and viscosity of a fluid to avoid an unbounded density/viscosity. The advection of the level‐set function was calculated through the Taylor–Galerkin method, and the direct approach method is employed for reinitialization. The proposed method was tested by solving several benchmark problems including rising bubbles exhibiting a large density difference and the surface tension effect. The numerical results of the rising bubbles were compared with the existing results to validate the benchmark quantities such as the centroid, circularity, and rising velocity. Furthermore, we focused our attention mainly on mass conservation and time‐step. We observed that the present method represented a convergence rate between 1.0 and 1.5 orders in terms of mass conservation and provided more stable solutions even when using a larger time‐step than the critical time‐step that was imposed because of the explicit treatment of surface tension. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Three numerical methods, namely, volume of fluid (VOF), simple coupled volume of fluid with level set (S‐CLSVOF), and S‐CLSVOF with the density‐scaled balanced continuum surface force (CSF) model, have been incorporated into OpenFOAM source code and were validated for their accuracy for three cases: (i) an isothermal static case, (ii) isothermal dynamic cases, and (iii) non‐isothermal dynamic cases with thermocapillary flow including dynamic interface deformation. Results have shown that the S‐CLSVOF method gives accurate results in the test cases with mild computation conditions, and the S‐CLSVOF technique with the density‐scaled balanced CSF model leads to accurate results in the cases of large interface deformations and large density and viscosity ratios. These show that these high accuracy methods would be appropriate to obtain accurate predictions in multiphase flow systems with thermocapillary flows. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In this article, we propose a simple area‐preserving correction scheme for two‐phase immiscible incompressible flows with an immersed boundary method (IBM). The IBM was originally developed to model blood flow in the heart and has been widely applied to biofluid dynamics problems with complex geometries and immersed elastic membranes. The main idea of the IBM is to use a regular Eulerian computational grid for the fluid mechanics along with a Lagrangian representation of the immersed boundary. Using the discrete Dirac delta function and the indicator function, we can include the surface tension force, variable viscosity and mass density, and gravitational force effects. The principal advantage of the IBM for two‐phase fluid flows is its inherent accuracy due in part to its ability to use a large number of interfacial marker points on the interface. However, because the interface between two fluids is moved in a discrete manner, this can result in a lack of volume conservation. The idea of an area preserving correction scheme is to correct the interface location normally to the interface so that the area remains constant. Various numerical experiments are presented to illustrate the efficiency and accuracy of the proposed conservative IBM for two‐phase fluid flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号