首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Three novel curcuminoids, curcumaromins A–C ( 1 – 3 , resp.), along with a known compound, longiferone B ( 4 ) were isolated from Curcuma aromatica Salisb . The structures of the new compounds were elucidated as (1E,4Z,6E)‐5‐hydroxy‐7‐{4‐hydroxy‐3‐[(1R*,6R*)‐3‐methyl‐6‐(propan‐2‐yl)cyclohex‐2‐en‐1‐yl)phenyl}‐1‐(4‐hydroxyphenyl)hepta‐1,4,6‐trien‐3‐one ( 1 ), 2,3‐dihydro‐2‐(4‐hydroxyphenyl)‐6‐[(E)‐2‐(4‐hydroxyphenyl)ethenyl]‐5‐[(1R*,6R*)‐3‐methyl‐6‐(propan‐2‐yl)cyclohex‐2‐en‐1‐yl]‐4H‐pyran‐4‐one ( 2 ), and (1E,6E)‐1,7‐bis(4‐hydroxyphenyl)‐4‐[(1R*,6R*)‐3‐methyl‐6‐(propan‐2‐yl)cyclohex‐2‐en‐1‐yl]hepta‐1,6‐diene‐3,5‐dione ( 3 ) on the basis of spectroscopic analysis. Curcumaromins A–C ( 1 – 3 ) represented the first examples of menthane monoterpene‐coupled curcuminoids. The known compound, longiferone B ( 4 ), was the first daucane sesquiterpene isolated from the genus Curcuma.  相似文献   

2.
Four new polyketides, botryosphaerones A–D ( 1 – 4 , resp.), were obtained from the fermentation culture of Botryosphaeria australis strain ZJ12‐1A, together with four known compounds, O‐methylasparvenone ( 5 ), 6‐ethyl‐2,7‐dimethoxyjuglon ( 6 ) and its monoacetyl derivative 7 , and O‐methylaspmenone ( 8 ). Their structures were elucidated by spectroscopic analyses, including 1D‐ and 2D‐NMR experiments, and HR‐Q‐TOF mass spectrometry, and by comparison with reported data. All compounds were evaluated for their cytotoxic and antimicrobial activities in vitro. Only compounds 6 and 7 showed cytotoxic and antimicrobial activities, as already reported.  相似文献   

3.
Three new triterpenoid saponins, ardisicrenoside I ( 1 ), ardisicrenoside J ( 2 ), and ardisicrenoside M ( 3 ), along with eight known compounds, were isolated from the roots of Ardisia crenata Sims . Their structures were elucidated as 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 1 ), 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 2 ), 30,30‐dimethoxy‐16‐oxo‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 3 ), ardisiacrispin A ( 4 ), ardisiacrispin B ( 5 ), ardisicrenoside B ( 6 ), ardisicrenoside A ( 7 ), ardisicrenoside H ( 8 ), ardisicrenoside G ( 9 ), cyclamiretin A‐3βOβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 10 ), and cyclamiretin A‐3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 11 ) by means of chemical and spectral analysis, and their cytotoxicities were evaluated in vitro.  相似文献   

4.
Four new phenylpropanoid esters of rhamnose, asiatisides A–D, along with the known compounds, buergeriside C1 ( 5 ), p‐methoxycinnamic acid, ferulic acid, and O‐methylferulic acid were obtained from the aerial parts of Buddleja asiatica Lour by chromatographic methods. The new compounds were elucidated as 3‐O‐acetyl‐4‐O‐(p‐methoxycinnamoyl)‐α‐L ‐rhamnopyranose ( 1 ), 3‐O‐acetyl‐4‐O‐feruloyl‐α‐L ‐rhamnopyranose ( 2 ), 2‐O‐acetyl‐4‐O‐(O‐methylferuloyl)‐α‐L ‐rhamnopyranose ( 3 ), 2‐O‐acetyl‐4‐O‐(p‐methoxycinnamoyl)‐α‐L ‐rhamnopyranose ( 4 ) by spectral data (1D‐, 2D‐NMR, and MS), respectively.  相似文献   

5.
Three new isomeric biisoflavonoids, dapholidins A–C ( 1 – 3 , resp.), have been isolated from the AcOEt‐soluble fraction of the MeOH‐soluble extract of the roots of Daphne oleoides, along with the known compounds daphwazirin ( 4 ), daphnetin 8‐Oβ‐D ‐glucopyranoside ( 5 ), daphnin ( 6 ), daphneticin 4″‐Oβ‐D ‐glucopyranoside ( 7 ), and 6,7‐dihydroxy‐3‐methoxy‐8‐[2‐oxo‐2H‐1‐benzopyran‐7‐(Oβ‐D ‐glucopyranosyl)‐8‐yl]‐2H‐1‐benzopyran‐2‐one ( 8 ). The structures of the new compounds were determined by spectroscopic analyses, including 1D‐ and 2D‐NMR.  相似文献   

6.
Three new phthalides, gnaphalides A–C ( 1 – 3 , resp.), together with three known phthalides, were isolated from the aerial part of Gnaphalium adnatum. The structures of the new compounds were elucidated as 6‐(1,1‐dimethylprop‐2‐en‐1‐yl)‐5,7‐dihydroxy‐2‐benzofuran‐1(3H)‐one ( 1 ), 5‐hydroxy‐7‐[(2‐hydroxy‐3‐methylbut‐3‐en‐1‐yl)oxy]‐2‐benzofuran‐1(3H)‐one ( 2 ), and 1,3‐dihydro‐7‐[(3‐methylbut‐2‐en‐1‐yl)oxy]‐1‐oxo‐2‐benzofuran‐5‐yl β‐D ‐glucopyranoside ( 3 ) on the basis of spectral analyses. The structure of 1 was also confirmed by X‐ray crystallographic analysis. The three known phthalides, identified as 5,7‐dihydroxyisobenzofuran‐1(3H)‐one ( 4 ), anaphatol ( 5 ), and 7‐O‐(β‐glucopyranosyl)‐5‐hydroxyisobenzofuran‐1(3H)‐one ( 6 ), were isolated from the genus Gnaphalium for the first time.  相似文献   

7.
A further phytochemical investigation on the whole plants of Ypsilandra thibetica yielded three new spirostane glycosides, named ypsilandrosides M–O ( 1 – 3 ). Their structures were established as (3β,11α,25R)‐3,11‐dihydroxyspirost‐5‐en‐12‐one 3‐{O‐α‐L ‐rhanmopyranosyl‐(1→4)‐O‐L ‐rhanmopyranosyl‐(1→4)‐O‐[α‐L ‐rhanmopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside} ( 1 ), (3β,7β,25R)‐spirost‐5‐ene‐3,7‐diol 3‐{O‐α‐L ‐rhanmopyranosyl‐(1→4)‐Oα‐L ‐rhanmopyranosyl‐(1→4)‐O‐[α‐L ‐rhanmopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside} ( 2 ), and (3β,7α,25R)‐spirost‐5‐ene‐3,7,17‐triol 3‐{O‐α‐L ‐rhanmopyranosyl‐(1→4)‐Oα‐L ‐rhanmopyranosyl‐(1→4)‐O‐[α‐L ‐rhanmopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside} ( 3 ) by means of a combination of MS, 1D‐ and 2D‐NMR spectroscopic methods, and chemical degradation. Among them, compound 3 is the first pennogenin (=(3β,25R)‐spirost‐5‐ene‐3,17‐diol) saponin whose aglycone contains an OH group at C(7). Compounds 1 – 3 were evaluated for the inhibition of the growth of five tumor cell lines, but all of them proved to be inactive.  相似文献   

8.
Nine new sesquiterpenes, i.e., dendronobilins A–I ( 1 – 9 ), with copacamphane‐type ( 1 ), picrotoxane‐type ( 2 – 6 ), muurolene‐type ( 7 ), alloaromadendrane‐type ( 8 ), and cyclocopacamphane‐type ( 9 ) skeletons, were isolated from the 60% EtOH extract of the stems of Dendrobium nobile. Their structures were established as (1R,2R,4S,5S,6S,8S,9R)‐2,8‐dihydroxycopacamphan‐15‐one ( 1 ), (2β,3β,4β,5β)‐2,4,11‐trihydroxypicrotoxano‐3(15)‐lactone ( 2 ), (2β,3β,5β,9α,11β)‐2,11‐epoxy‐9,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 3 ), (2β,3β,5β,12R*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 4 ), (2β,3β,5β,12S*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 5 ), (2β,3β,5β,9α)‐9,10‐cyclo‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 6 ), (9β,10α)‐muurol‐4‐ene‐9,10,11‐triol ( 7 ), (10α)‐alloaromadendrane‐10,12,14‐triol ( 8 ), and (5β)‐cyclocopacamphane‐5,12,15‐triol ( 9 ) on the basis of spectroscopic analysis. The absolute configuration of compound 1 was tentatively assigned as (1R,2R,4S,5S,6S,8S,9R) according to its CD spectrum and the octant rule. Compounds 1 and 4 – 9 were inactive in our preliminary in vitro immunomodulatory bioassay.  相似文献   

9.
Thirty seven taxanes were characterized from the leaves and twigs of Taiwanese yew (Taxus sumatrana, Taxaceae). Four of these metabolites are new and designated as sumataxins A–D ( 1 – 4 ). Compound 1 possesses an 11(15→1),11(10→9)‐di‐abeo‐taxane skeleton with an unusual spiro‐connected 2,2‐dimethyl‐1,3‐dioxolane ring at C(4), whereas compound 2 has a rare β‐OH orientation at C(13) of taxane diterpene ester. In addition, sumataxin C ( 3 ) is formulated as an 11(15→1)‐abeo‐taxane with a 4,5‐acetonide ring skeleton. Compound 4 is the first metabolite with a 4,20‐epoxy‐taxane structure. The structures of all the taxanes were established by spectroscopic methods. All compounds were evaluated for anti‐HSV‐1 and PBMC activities. Compound 9 exhibited significant enhancement of cell proliferation on peripheral blood mononuclear cells.  相似文献   

10.
Four new saponins, yemuosides YM17–YM20 ( 1 – 4 , resp.), were isolated from the rattan of Stauntonia chinensis DC. (Lardizabalaceae) along with a known saponin, nipponoside D ( 5 ). Their structures were elucidated by spectroscopic analysis and chemical evidence as 20,30‐dihydroxy‐29‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 1 ), 20,29‐dihydroxy‐30‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 2 ), 29‐hydroxy‐30‐norolean‐20(21)‐enolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 3 ), 29‐hydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 4 ), and 23,29‐dihydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 5 ). Yemuoside YM17–YM19 ( 1 – 3 , resp.) contain novel unusual nortriterpene aglycones.  相似文献   

11.
Four new furostanol steroid saponins, borivilianosides A–D ( 1 – 4 , resp.), corresponding to (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐hydroxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 1 ), (3β,5α,22R,25R)‐ 26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 3 ), and (3β,5α,25R)‐26‐(β‐D ‐glucopyranosyloxy)furost‐20(22)‐en‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 4 ), together with the known tribuluside A and (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside were isolated from the dried roots of Chlorophytum borivilianum Sant and Fern . Their structures were elucidated by 2D ‐NMR analyses (COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry.  相似文献   

12.
Five new aromatic glycosides, 1 – 5 , named as carthamosides B4–B8, together with three known compounds, 4′‐(hydroxyphenacyl)‐β‐D ‐glucopyranoside ( 6 ), benzyl‐O‐α‐L ‐rhamnopyranosyl‐(1→6)‐β‐D ‐glucopyranoside ( 7 ), and 4‐(methoxybenzyl)‐O‐β‐D ‐glucopyranoside ( 8 ), have been isolated from the air‐dried flower of Carthamus tinctorius. Their structures were identified on the basis of chemical and spectroscopic methods.  相似文献   

13.
Eight new benzoylated gentisyl alcohol (=2‐(hydroxymethyl)benzene‐1,4‐diol) glucosides, itosides A–H ( 1 – 8 ), together with the new pyrocatechol (=benzene‐1,2‐diol) glycoside itoside I ( 9 ) were isolated from the bark and twigs of Itoa orientalis (Flacourtiaceae). In itosides B–D ( 2 – 4 ), the gentisyl alcohol moiety was esterified by 1‐hydroxy‐6‐oxocyclohex‐2‐ene‐1‐carboxylic acid, while itosides E–H ( 5 – 8 ) contained instead an additional 2‐hydroxybenzoic acid moiety. The compounds were accompanied by the known derivatives 4‐hydroxytremulacin ( 10 ), poliothyrsoside ( 11 ), poliothyrsin ( 12 ), homaloside D ( 13 ), tremulacin, and pyrocatechol β‐D ‐glucopyranoside. The structures of the new compounds were elucidated by spectral and chemical methods.  相似文献   

14.
Two new epimeric chlorinated withaphysalins, rel‐(4β,5β,6α,18S,22R)‐ and rel‐(4β,5β,6α,18R,22R)‐6‐chloro‐18,20‐epoxy‐18‐ethoxy‐4,5‐dihydroxy‐1‐oxowitha‐2,24‐diene‐26,22‐lactone ( 1 and 2 resp.), together with the new rel‐(4β,5β,6α,18R,22R)‐6‐chloro‐18,20‐epoxy‐4,5‐dihydroxy‐18‐methoxy‐1‐oxowitha‐2,24‐diene‐26,22‐lactone ( 3 ) and rel‐(3β,4β,5β,6β,18R,22R)‐5,6:18,20‐diepoxy‐3,18‐diethoxy‐4‐hydroxy‐1‐oxowith‐24‐ene‐26,22‐lactone ( 4 ) were isolated from the leaves of Acnistus arborescens and named withaphysalins T–W, respectively. The final structures and the complete 1H‐ and 13C‐NMR assignments of the three chlorowithaphysalins 1 – 3 were performed by means of HR‐ESI‐MS and 1D‐ and 2D‐NMR experiments, including COSY, HSQC, and HMBC, beside comparison with spectral data of analogous compounds from the literature. The structure of 4 was also confirmed by means of a single‐crystal X‐ray diffraction analysis.  相似文献   

15.
Four new phenolic glycosides, named rebouosides A–D ( 1 – 4 , resp.), along with three known ones 2‐(3,4‐dihydroxyphenyl)ethyl 2‐Oα‐L ‐rhamnopyranosyl‐β‐D ‐allopyranoside ( 5 ), 2‐(3,4‐dihydroxyphenyl)ethyl β‐D ‐allopyranoside ( 6 ), 2‐(3,4‐dihydroxyphenyl)ethyl β‐D ‐glucopyranoside ( 7 ), and a nucleoside, inosine ( 8 ), were isolated from Chinese liverwort Reboulia hemisphaerica. Their structures were elucidated by acidic hydrolysis and extensive spectroscopic methods, including 2D‐NMR techniques.  相似文献   

16.
Four new myrsinol diterpenes, proliferins A–D ( 1 – 4 , resp.) were isolated from the EtOH extracts of the roots of Euphorbia prolifera, along with four known compounds, euphorprolitherin B ( 5 ), euphorprolitherin D ( 6 ), SPr5 ( 7 ), and 14‐desoxo‐3‐O‐propionyl‐5,15‐di‐O‐acetyl‐7‐O‐nicotinoylmyrsinol‐14β‐acetate ( 8 ). Their structures were established on the basis of spectroscopic methods, including HR‐ESI‐MS, and 1D‐ and 2D‐NMR techniques. The cytotoxicity of compounds 1, 3 , and 4 against cancer cells was evaluated, with compound 1 being active against A2780 cancer cells.  相似文献   

17.
Four novel γ‐pyrone (=4H‐pyran‐4‐one) metabolites, petrorhagiosides A–D, along with four known analogs, have been isolated from the MeOH extract of Petrorhagia saxifraga, a perennial herbaceous plant typical of Mediterranean vegetation. The structures of the new compounds were established on the basis of extensive spectroscopic analyses including 1D‐ an 2D‐NMR (1H,1H‐DQ‐COSY, TOCSY, HSQC, CIGAR‐HMBC, and HSQC‐TOCSY) experiments.  相似文献   

18.
Four new highly oxygenated nortriterpenoids, lancifodilactones O–R ( 1 – 4 ), together with six known ones, i.e., 5 – 10 , were isolated from the leaves and stems of Schisandra lancifolia. Their structures were elucidated by spectroscopic analyses, including 1D‐ and 2D‐NMR experiments and mass spectrometry. Compounds 1 – 3 were evaluated for their cytotoxicity against NB4, A549, SHSY5Y, PC‐3, and MCF‐7 cell lines. No compounds exhibited significant cytotoxicity, the IC50 values being above 50 μM .  相似文献   

19.
Four new C19‐nor‐diterpenoid alkaloids, named brachyaconitines A–D ( 1 – 4 ), were isolated from the roots of Aconitum brachypodum Diels. Their structures were elucidated as 3‐O‐acetyl‐20‐deethyl‐20‐formylaconitine ( 1 ), 3‐O‐acetyl‐19,20‐didehydro‐20‐deethylaconitine ( 2 ), 3‐O‐acetyl‐8‐de(acetyloxy)‐7,8,17,20‐tetradehydro‐20‐deethyl‐7,17‐secoaconitine ( 3 ), and 1‐O‐methylflavaconitine ( 4 ) by means of MS, IR, 1D‐ and 2D‐NMR analyses. The structure of compound 1 was confirmed by an X‐ray diffraction experiment.  相似文献   

20.
Two new homo‐aro‐cholestane glycosides and a new cholestane glycoside, along with three known saponins, were isolated from the 95% EtOH extract of the roots and rhizomes of Paris polyphylla var. pseudothibetica. The structures of the new compounds were elucidated as 3βO‐{α‐L ‐rhamnopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl‐(1→4)‐[α‐L ‐rhamnopyranosyl‐(1→2)]}‐β‐D ‐glucopyranosylhomo‐aro‐cholest‐5‐ene‐26‐Oβ‐D ‐glucopyranoside (parispseudoside A, 1 ), 3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosylhomo‐aro‐cholest‐5‐ene‐26‐Oβ‐D ‐glucopyranoside (parispseudoside B, 2 ), and (25R)‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl‐(1→4)‐[α‐L ‐rhamnopyranosyl‐(1→2)]}‐β‐D ‐glucopyranosyl‐cholesta‐5,17(20)‐diene‐16,22‐dione‐26‐Oβ‐D ‐glucopyranoside (parispseudoside C, 3 ) by spectroscopic methods, including 1D‐ and 2D‐NMR, and MS experiments, as well as chemical evidences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号