首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of highly selective, chemically stable and moisture‐resistant adsorbents is a key milestone for gas separation. Porous carbons featured with random orientation and cross‐linking of turbostratic nanodomains usually have a wide distribution of micropores. Here we have developed a thermoregulated phase‐transition‐assisted synthesis of carbon nanoplates with more than 80 % sp2 carbon, unimodal ultramicropore and a controllable thickness. The thin structure allows oriented growth of carbon crystallites, and stacking of crystallites in nearly parallel orientation are responsible for the single size of the micropores. When used for gas separation from CH4, carbon nanoplates exhibit high uptakes (5.2, 5.3 and 5.1 mmol g?1) and selectivities (7, 71 and 386) for CO2, C2H6 and C3H8 under ambient conditions. The dynamic adsorption capacities are close to equilibrium uptakes of single components, further demonstrating superiority of carbon nanoplates in terms of selectivity and sorption kinetics.  相似文献   

2.
Molecular mobility of oxygen, O2, and nitrogen, N2, in Carbon Molecular Sieves, CMS, was investigated using the Frequency Response, FR, technique to identify mass-transfer mechanisms and related kinetic time constants. The FR data showed that O2 mobility in four types of CMS was dominantly controlled by surmounting surface-barrier resistances, whereas the mobility of both O2 and N2 in pellets of a fifth CMS type obeyed the Fickian diffusion model. Temperature and pressure dependences of surface-barrier penetration time constants were obtained for O2 and N2 in several of those CMS materials. The kinetic time constants of surface-barrier penetration were related to Langmuir-type rate constants, which indicates that kinetic behavior of O2 therein could also be interpreted in terms of a Langmuir-kinetics equation.  相似文献   

3.
Dip coating and pyrolysis processes are used to create multi‐layer asymmetric carbon molecular sieve (CMS) hollow fiber membranes with excellent gas separation properties. Coating of an economical engineered support with a high‐performance polyimide to create precursor fibers with a dense skin layer reduces material cost by 25‐fold compared to monolithic precursors or ceramic supports. CMS permeation results with CO2/CH4 (50:50) mixed gas feed show attractive CO2/CH4 selectivity of 58.8 and CO2 permeance of 310 GPU at 35 °C.  相似文献   

4.
A carbon dioxide imprinted solid amine adsorbent (IPEIA‐R) with polyethylenimine (PEI) as a skeleton was conveniently prepared by using glutaraldehyde to cross‐link carbon dioxide‐preadsorbed PEI. As confirmed by FTIR, FT‐Raman, and 13C NMR spectroscopy, CO2 preadsorbed on PEI could occupy the reactive sites of amino groups and act as a template for imprinting in the cross‐linking process. The imino groups formed from the cross‐linking reaction between glutaraldehyde and PEI could be reduced by NaBH4 to form CO2‐adsorbable amino groups. The adsorption results indicated that CO2 imprinting and reduction of imino groups by NaBH4 endowed the adsorbent with a higher CO2 adsorption capacity. Compared with PEI‐supported mesoporous adsorbents, the solid amine adsorbent with PEI as a skeleton can avoid serious pore blockage and CO2 diffusion resistance, even with a high amine content. The solid amine adsorbent with PEI as a skeleton showed a remarkable CO2 adsorption capacity (8.56 mmol g?1) in the presence of water at 25 °C, owing to the high amine content and good swelling properties. It also showed promising regeneration performance and could maintain almost the same CO2 adsorption capacity after 15 adsorption–desorption cycles.  相似文献   

5.
Platinum (Pt)/activated‐carbon catalysts were prepared and characterized by pore‐size distribution (PSD), propane‐sorption dynamics, and activity of cyclohexane dehydrogenation to benzene. The batch‐type frequency‐response (FR) spectroscopic technique was applied to determine the mass‐transport rate of propane sorption. Two parallel sorption processes of different time constants were distinguished, suggesting that adsorption proceeds in smaller and larger micropores that are not interconnected. Increasing Pt loading affected the propane mobility, but increased the dehydrogenation activity only up to ca. 1 wt‐% of Pt content. It was concluded that clusters of metallic Pt‐atoms are located preferentially at the narrowest pores. Blocking these micropores, the Pt reduces the carbon surface available for sorption; also, a significant fraction of the metal becomes inaccessible for the reactant.  相似文献   

6.
Carbon molecular sieves (CMS) were prepared from Greek lignite by a thermal treatment technique involving three sequential stages: carbonization, followed by activation with an oxidizing agent, and aperture modification by coke deposition. Adsorption of N2 at 77 K and CO2 at 298 K was used for the characterization of products. Molecular sieving properties were examined by measuring the adsorption kinetic curves of CO2 and CH4 at room temperature. Activated samples with the highest surface area were selected for CMS production by employing a propylene cracking technique. High temperatures resulted in the production of materials with large differences in their BET and CO2 surface areas. CO2-CH4 selectivity ratios estimated from the adsorption kinetic curves were high for these samples. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Simultaneous improvement in adsorption selectivity and capacity for single adsorbents is challenging but counting for much in adsorptive separations. To this end, a formate metal–organic framework and activated carbon fiber composite was synthesized in our work by a simple two‐step process, involving homogeneous precipitation of a MOF precursor on an activated carbon fiber and subsequent template replication. The resultant core–shell composite, ACF@[Ni3(HCOO)6], exhibited optimized adsorption performance both in selectivity and capacity for the separation of CH4/N2 to most of state‐of‐the‐art adsorbents.  相似文献   

8.
The discovery of natural gas fields with a high content of CO2 in world gas reservoirs poses new challenges for CO2 capture. This work investigates the use of the metal‐organic framework (MOF) Cu‐BTC and hybrid MWCNTs@Cu‐BTC for CO2 adsorption. Cu‐BTC and hybrid MWCNTs@Cu‐BTC were synthesized by the solvothermal method. The results of imaging of intact MOF pores in Cu‐BTC and hybrid MWCNTs@Cu‐BTC nanocrystals by high‐resolution transmission electron microscopy (HRTEM) under liquid nitrogen conditions are presented. Physical characterizations of the solid adsorbents were made by using a selection of different techniques, including field‐emission scanning electron microscopy (FESEM), X‐ray powder diffraction (XRD), Fourier transform infrared (FT‐IR) spectroscopy, thermogravimetric analysis (TGA), Brunauer–Emmet–Teller (BET) surface area, and CO2 adsorption and physisorption measurements. HRTEM and FESEM confirmed that Cu‐BTC has an octahedral shape and that the surface morphology of Cu‐BTC changes by the intercalation of MWCTNs. The results show that the modified Cu‐BTC improved the CO2 adsorption compared to pure Cu‐BTC. The increase in the CO2 uptake capabilities of hybrid MWCNTs@Cu‐BTC was ascribed to the intercalation of MWCNTs with Cu‐BTC crystals. The CO2 sorption capacities of Cu‐BTC and hybrid MWCNTs@Cu‐BTC were found to increase from 1.91701 to 3.25642 mmol/g at ambient conditions.  相似文献   

9.
Pure and binary adsorption of CO2, H2, and N2 on activated carbon   总被引:1,自引:0,他引:1  
A new developing field of application for pressure swing adsorption (PSA) processes is the capture of CO2 to mitigate climate change, especially the separation of CO2 and H2 in a pre-combustion context. In this process scheme the conditions of the feed to the separation step, namely a pressure of 3.5 to 4.5 MPa and a CO2 fraction of around 40% are favorable for an adsorption based separation process and make PSA a promising technology. Among the commercial adsorbent materials, activated carbon is most suitable for this application. To evaluate the potential, to benchmark new materials, and for process development a sound basis of the activated carbon thermodynamic data is required, namely equilibrium adsorption isotherms of the relevant pure components and mixtures, Henry’s constants and isosteric heats.  相似文献   

10.
This paper presents a comparative study between a carbon molecular sieve (CMS) membrane and a commercial CMS adsorbent; these materials are suited for selective gas permeation and adsorption-based gas separations, respectively. The purpose of this analysis is to better understand the mass transport mechanism in CMS membranes and how it is related to the material's structure. The structural characterization based on the adsorption of CO2 at 0 °C revealed that the adsorbent has a greater micropore volume, a smaller mean pore width and a micropore size distribution shifted to the left, when compared to the membrane. This translates into a lower adsorption capacity of the membrane towards N2, Ar, CO2 and O2 at 29.5 °C and 0–7 bar. The adsorption kinetics were also studied and the pressure-dependence of the apparent time constants established; different models were used to predict the experimental results, emphasizing the very important role of the ultramicroporosity on the properties of the materials. The CMS membrane exhibited a pore blockage effect when permeating O2 and CO2. Further morphologic characterization was performed by SEM, X-ray diffraction and mercury porosimetry.  相似文献   

11.
A new type of composite adsorbents was synthesized by incorporating monoethanol amine (MEA) into β-zeolite. The parent and MEA-functionalized β-zeolites were characterized by X-ray diffraction (XRD), N2 adsorption, and thermogravimetric analysis (TGA). The adsorption behavior of carbon dioxide (CO2), methane (CH4), and nitrogen (N2) on these adsorbents was investigated at 303 K. The results show that the structure of zeolite was well preserved after MEA modification. In comparison with CH4 and N2, CO2 was preferentially adsorbed on the adsorbents investigated. The introduction of MEA significantly improved the selectivity of both CO2/CH4 and CO2/N2, the optimal selectivity of CO2/CH4 can reach 7.70 on 40 wt% of MEA-functionalized β-zeolite (MEA(40)-β) at 1 atm. It is worth noticing that a very high selectivity of CO2/N2 of 25.67 was obtained on MEA(40)-β. Steric effect and chemical adsorbate-adsorbent interaction were responsible for such high adsorption selectivity of CO2. The present MEA-functionalized β-zeolite adsorbents may be a good candidate for applications in flue gas separation, as well as natural gas and landfill gas purifications.  相似文献   

12.
The adsorption of CO2 on a number of activated carbons, thermal carbon black, and oxide materials at 195 K was studied using static and dynamic techniques. The landing surface areas ω(CO2) ≈ 0.19 nm2 on thermal carbon black and the absolute values of sorption for P/P 0 < 0.4 were determined. The density of adsorbed CO2 in the micropore volume was estimated at ρ(CO2) = 0.91 g/cm3. It was demonstrated that the previously found effect of a weakening of the sorption interaction of nitrogen molecules with thin-walled materials (which manifested itself in an analysis of sorption isotherms by a comparative method) was pronounced to a lesser degree for the sorption of CO2. At the same time, the presence of supermicropores in activated carbon samples resulted in overestimated values of surface areas. A dynamic method was proposed to measure the spectra of CO2 desorption at 195–260 K using a SORBI-MS system for evaluating the binding energy of sorbate molecules with the surface.  相似文献   

13.
Reducing anthropogenic CO2 emission and lowering the concentration of greenhouse gases in the atmosphere has quickly become one of the most urgent environmental issues of our age. Carbon capture and storage (CCS) is one option for reducing these harmful CO2 emissions. While a variety of technologies and methods have been developed, the separation of CO2 from gas streams is still a critical issue. Apart from establishing new techniques, the exploration of capture materials with high separation performance and low capital cost are of paramount importance. Metal-organic frameworks (MOFs), a new class of crystalline porous materials constructed by metal-containing nodes bonded to organic bridging ligands hold great potential as adsorbents or membrane materials in gas separation. In this paper, we review the research progress (from experimental results to molecular simulations) in MOFs for CO2 adsorption, storage, and separations (adsorptive separation and membrane-based separation) that are directly related to CO2 capture.  相似文献   

14.
The separation of 1,3‐butadiene from C4 hydrocarbon mixtures is imperative for the production of synthetic rubbers, and there is a need for a more economical separation method, such as a pressure swing adsorption process. With regard to adsorbents that enable C4 gas separation, [Zn(NO2ip)(dpe)]n (SD‐65; NO2ip=5‐nitroisophthalate, dpe=1,2‐di(4‐pyridyl)ethylene) is a promising porous material because of its structural flexibility and restricted voids, which provide unique guest‐responsive accommodation. The 1,3‐butadiene‐selective sorption profile of SD‐65 was elucidated by adsorption isotherms, in situ PXRD, and SSNMR studies and was further investigated by multigas separation and adsorption–desorption‐cycle experiments for its application to separation technology.  相似文献   

15.
The development of functional porous carbon with high CO2/N2 selectivity is of great importance for CO2 capture. In this paper, a type of porous carbon with doped pyridinic sites (termed MOFC) was prepared from the carbonization of a pyridyl‐ligand based MOF. Four MOFCs derived from different carbonizing temperatures were prepared. Structural studies revealed high contents of pyridinic‐N groups and nearly the same pore‐size distributions for these MOFCs. Gas‐sorption studies revealed outstanding CO2 uptake at low pressures and room temperature. Owing to the high content of pyridinic‐N groups, the CO2/N2 selectivity on these MOFCs exhibits values of about 40–50, which are among the top values in carbon materials. Further correlation studies demonstrated that the CO2/N2 selectivities show a positive linear relationship with the surface density of pyridinic‐N groups, thus validating the synergistic effect of the doped pyridinic‐N groups on CO2 adsorption selectivity.  相似文献   

16.
Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high‐surface‐area hierarchically porous N‐doped carbon microflowers, which were assembled from porous nanosheets by a three‐step route: soft‐template‐assisted self‐assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure‐directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N‐doped carbon microflowers (A‐NCF‐4) have a hierarchically porous structure, high specific surface area (2309 m2 g?1), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm3 g?1). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g?1 were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.  相似文献   

17.
Highly permeable glassy polymeric membranes based on poly (1‐trimethylsilyl‐1‐propyne) (PTMSP) and a polymer of intrinsic porosity (PIM‐1) were investigated for water sorption, water permeability and the separation of CO2 from N2 under humid mixed gas conditions. The water sorption isotherms for both materials followed behavior indicative of multilayer adsorption within the microvoids, with PIM‐1 registering a significant water uptake at very high water activities. Analysis of the sorption isotherms using a modified dual sorption model which accounts for such multilayer effects gave Langmuir affinity constants more consistent with lighter gases than the use of the standard dual mode approach. The water permeability through PTMSP and PIM‐1 was comparable over the water activities studied, and could be successfully model ed through a dual mode sorption model with a concentration dependent diffusivity. The water permeability through both membranes as a function of temperature was also measured, and found to be at a minimum at 80 ° C for PTMSP and 70 °C for PIM‐1. This temperature dependence is a function of reducing water solubility in both membranes with increasing temperature countered by increasing water diffusivity. The CO2 ‐ N2 mixed gas permeabilities through PTMSP and PIM‐1 were also measured and model ed through dual mode sorption theory. Introducing water vapour further reduced both the CO2 and N2 permeabilities. The plasticization potential of water in PTMSP was determined and indicated water swelled the membrane increasing CO2 and N2 diffusivity, while for PIM‐1 a negative potential implied that water filling of the microvoids hampered CO2 and N2 diffusion through the membrane. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 719–728  相似文献   

18.
This study reports 6FDA:BPDA‐DAM polyimide‐derived hollow fiber carbon molecular‐sieve (CMS) membranes for hydrogen and ethylene separation. Since H2/C2H4 selectivity is the lowest among H2/(C1‐C3) hydrocarbons, an optimized CMS fiber for this gas pair is useful for removing hydrogen from all‐cracked gas mixtures. A process we term hyperaging provides highly selective CMS fiber membranes by tuning CMS ultramicropores to favor H2 over larger molecules to give a H2/C2H4 selectivity of over 250. Hyperaging conditions and a hyperaging mechanism are discussed in terms of an expedited physical aging process, which is largely controlled by the hyperaging temperature. For the specific CMS material considered here, a hyperaging temperature beyond 90 °C but less than 250 °C works best. Hyperaging also stabilizes CMS materials against physical aging and stabilizes the performance of H2 separation over extended periods. This work opens a door in the development of CMS materials for the separation of small molecules from large molecules.  相似文献   

19.
Multi-walled carbon nanotubes (MWCNTs) and powder-activated carbon (PAC) were used as adsorbents for adsorption of nitrofurazone, a veterinary medicine, from aqueous solutions. The adsorbents were characterized using FTIR transform infrared spectroscopy, N2 adsorption/desorption isotherms, and scanning electron microscopy. The effects of initial pH, contact time, and temperature on adsorption capacity of the adsorbents were investigated. For MWCNT and PAC, the result showed that when the pH value was ranged from 2.0 to 10.0, the dosage of adsorbent was 0.02 g, and adsorptive time is 4 hours, the removal efficiencies for nitrofurazone were 96.8% and 94.7%, and the corresponding maximum capacities at 283 K were close to 50.8 mgg?1 and 59.9 mgg?1, respectively. For nitrofurazone, the pseudo-second-order kinetic model provided the best fit to the experimental data. The Boyd model indicated the mechanism for adsorption processes was mainly external mass transfer, while the effect of particle internal diffusion was relatively weak. Liu model could best fit to the experimental data of isothermal adsorption. The data of adsorption thermodynamics showed that the adsorption process was spontaneous.  相似文献   

20.
Composite adsorbents of carbon and alumina intercalated montmorillonite were prepared and characterized by adsorption of N2and O2at various temperatures. The effects of pyrolysis, temperature, heating rate, subsequent degassing, and doping of cations and anions were investigated. The adsorption capacities of the composite adsorbents developed at higher temperatures (0 and −79°C) are found to be larger than those of normal alumina pillared clays. The experimental results showed that the framework of these adsorbents is made of alumina particles and clay sheets while the pyrolyzed carbon distributes in the space of interlayers and interpillars. The pores between the carbon particles, clay sheets, and alumina pillars are very narrow with very strong adsorption forces, leading to enhanced adsorption capacities at 0 and −79°C. The composite adsorbents exhibit features similar to those of carbonaceous adsorbents. Their pore structures, adsorption capacities, and selectivities to oxygen can be tailored by a controlled degassing procedure. Meanwhile, ions can be doped into the adsorbents to modify their adsorption properties, as usually observed for oxide adsorbents like zeolite and pillared clays. Such flexibility in pore structure tailoring is a potential advantage of the composite adsorbents developed for their adsorption and separation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号