首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The interaction between anionic surfactants (AS) and 1‐hexadecyl‐3‐methylimidazolium bromide [C16mim]Br was studied by using resonance light scattering (RLS) technique, UV‐Vis spectrophotometry and fluorometric methods. In Britton Robinson (BR) buffer (pH 6.0), [C16mim]Br reacted with AS to form supermolecular complex which resulted in enhancement in RLS intensity. Their maximum RLS wavelengths were all at 390 nm. Some important interacting experimental variables, such as the solution acidity, [C16mim]Br concentration, salt effect and addition order of the reagents, were investigated and optimized. Under the optimum conditions, quantitative determination ranges were 0.001–7 μg·mL?1 for dodecyl sodium sulfate (SDS), 0.001–6 μg·mL?1 for sodium dodecylbenzene sulfonate (SDBS) and 0.005–7 μg·mL?1 for sodium lauryl sulfonate (SLS), respectively, while the detection limits were 1.3 ng·mL?1 for SDS, 1.0 ng·mL?1 for SDBS and 5.1 ng·mL?1 for SLS, respectively. Based on the ion‐association reaction, a highly sensitive, simple and rapid method has been established for the determination of AS.  相似文献   

2.
The competitive reaction between ethambutol and two fluorescent probes (i.e., berberine and palmatine) for occupancy of the cucurbit[7]uril (CB[7]) cavity was studied by spectrofluorometry. The CB[7] reacts with these probes to form stable complexes, and the fluorescence intensity of the complexes is greatly enhanced. In addition, the excitation and emission wavelengths of their complexes moved to wavelengths of 343 nm and 495 nm, respectively. However, the addition of ethambutol dramatically quenches the fluorescence intensity of the two complexes. Accordingly, a couple of new fluorescence quenching methods for the determination of ethambutol were established. The methods can be applied for quantifying ethambutol. A linear relationship between the fluorescence quenching values (ΔF) and ethambutol concentration exists in the range of 5.0-1000.0 ng mL(-1), with a correlation coefficient (r) of 0.9997. The detection limit is 1.7 ng mL(-1). The fluorescent probe of berberine has higher sensitivity than palmatine. This paper also discusses the mechanism of fluorescence indicator probes.  相似文献   

3.
The ability of two water‐soluble acyclic cucurbit[n]uril (CB[n]) type containers, whose hydrophobic cavity is defined by a glycoluril tetramer backbone and terminal aromatic (benzene, naphthalene) sidewalls, to act as solubilizing agents for hydrocarbons in water is described. 1H NMR spectroscopy studies and phase‐solubility diagrams establish that the naphthalene‐walled container performs as well as, or better than, CB[7] and CB[8] in promoting the uptake of poorly soluble hydrocarbons into aqueous solution through formation of host–hydrocarbon complexes. The naphthalene‐walled acyclic CB[n] container is able to extract large hydrocarbons from crude oil into aqueous solution.  相似文献   

4.
CdTe nanocrystals (CdTe NCs) were achieved by reaction of CdCl2 with KHTe solution and were capped with sodium mercaptoacetate. The product was detected by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), fluorescence spectra, ultraviolet-visible spectra and X-ray diffraction (XRD). The CdTe NCs are of cubic structure and the average size is about 5 nm. The fluorescence quantum yield of CdTe NCs aqueous solution increased from 37% to 97% after 20 d under room light. The maximum λ em of fluorescence changed from 543 nm to 510 nm and the blue shift was 33 nm. CdTe NCs aqueous solution can be steady for at least 10 months at 4 in° a refrigerator. The resonance Rayleigh scattering (RRS) of CdTe NCs in the aqueous solution was investigated. The maximum scattering peak was located at about 554 nm. The interactions of CdTe NCs with amikacin sulfate (AS) and micronomicin sulfate (MS) were investigated respectively. The effects of AS and MS on fluorescence and RRS of CdTe NCs were analyzed. It was found that AS and MS quenched the photoluminescence of CdTe NCs and enhanced RRS of CdTe NCs. Under optimum conditions, there are linear relationships between quenching intensity (F 0-F), intensity of RRS (I-I 0) and concentration of AS and MS. The detection limits (3б) of AS and MS are respectively 3.4 ng·mL−1 and 2.6 ng·mL−1 by the fluorescence quenching method, and 15.2 ng·mL−1 and 14.0 ng·mL−1 by the RRS method. The methods have high sensitivity, thus CdTe NCs may be used as fluorescence probes and RRS probes for the detection of aminoglycoside antibiotics. Supported by the National Natural Science Foundation of China (Grant No. 20475045)  相似文献   

5.
Tricyclic basic dyes (proflavine, acridine orange, pyronine, pyronine Y, oxonine, thionine and methylene blue) often form one‐to‐one or two‐to‐one complexes with CB[7] and CB[8], respectively. In the case of pyronine Y, the complexes with CB[7] and CB[8] have a one‐to‐one and three‐to‐one stoichiometry, respectively. The binding constants for CB[7] complexes range from 3.07×106 to 1.70×107 m ?1. In the case of CB[8], the association constant varies between 3.24×1013 and 2.50×1016 m ?2. Overall, these binding constants are four orders of magnitude higher than those reported for the same dyes in β and γ‐cyclodextrins. Formation of the host–guest complexes leads to an increase in the fluorescence quantum yields in the case of CB[7], while the dimeric or trimeric dye encapsulated in CB[8] are remarkably less fluorescent than the same dye in diluted solutions.  相似文献   

6.
The supramolecular interaction of a homologous series of cucurbit[n]uril (CB[n], n = 5, 6, 7, 8) hosts and coptisine (COP) was studied by spectrofluorimetry. All of the CB[n]s were found to react with COP to form 1:1 host-guest stable complexes and the fluorescence intensity of the complexes was greatly enhanced. The apparent association constants of the complexes were 1.44 × 104, 1.28 × 104, 1.86 × 104 and 1.26 × 104 L mol−1 for CB[5], CB[6], CB[7] and CB[8], respectively. In addition, CB[5] and CB[7] exhibited a higher fluorescence signal than CB[6] and CB[8]. The fluorescence intensity of the complex with CB[7] was enhanced 70-fold compared to that of the studied drug itself. Based on the significant enhancement of fluorescence intensity of supramolecular complex, a simple, rapid, highly sensitive, and selective spectrofluorimetric method was developed for the determination of COP in aqueous solution in the presence of CB[7]. At the optimum reaction conditions, a linear relationship was obtained in the range from 0.05 to 1700 ng mL−1 with a detection limit of 0.012 ng mL−1. The proposed method was successfully applied for the determination of the drug in urine and serum samples.  相似文献   

7.
A series of square planar cyclometalated heteroleptic platinum(II) complexes of the type [(C^N)Pt(O^O)] [where, O^O is a β‐diketonato ligand of acetylacetone (acac), C^N = cyclometalating 7‐(4‐fluorophenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L1), 7‐(4‐chlorophenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L2), 7‐(4‐bromophenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L3), 7‐(4‐methoxyphenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L4), 5‐phenyl‐7‐(p‐tolyl)pyrazolo[1,5‐a]pyrimidine (L5)] have been design, synthesized and characterized. All compounds have been screened for biological studies like in vitro antibacterial, in vitro cytotoxicity, cellular level cytotoxicity, absorption titration, viscosity measurements, fluorescence quenching analysis, molecular docking and DNA nuclease. The intrinsic binding constants (Kb) of compounds with HS‐DNA has been obtained in range of 2.892–0.242 × 105 M?1. All the compounds bound with HS DNA by partial intercalative mode of binding. MIC study has been carried out against Gram(+ve) and Gram(?ve) bacterial species. In vitro cytotoxicity against brine shrimp lethality bioassay has been also carried out. The LC50 values of the ligands and complexes have been found in range of 56.49–120.22 μg/mL and 6.71–11.96 μg/mL, respectively.  相似文献   

8.
《Analytical letters》2012,45(16):2655-2664
Sample preparation technique based on an organic filter membrane (pH-resolved filter membrane microextraction) (pH-RFMME) was developed, coupled with high-performance liquid chromatography, and used to determine protoberberine alkaloids (jatrorrhizine, epiberberine, coptisine, palmatine, and berberine) in Coptis chinensis at different pH values through a one-step procedure. This green procedure provides a desirable sample pretreatment technology. The main variables affecting the extraction such as filter membrane area (or volumes of extraction solvents), sample pH, eluent pH, ionic strength, extraction stirring rate, extraction time, and sample volume were optimized. Under the optimized conditions, the enrichment factors of the analytes were 40.4–52.0, the linear ranges were 3.2–6250 ng · mL?1 for jatrorrhizine and epiberberine, 6.0–12000 ng · mL?1 for coptisine, 1.8–3600 ng · mL?1 for palmatine, and 18.8–18800 ng · mL?1 for berberine, with r 2 ≥ 0.9945. The limits of detection were less than 0.3 ng · mL?1. Satisfactory recoveries (84.8%–115.5%) and precision (1.8%–10.0%) were also achieved. These results confirmed that pH-RFMME is a simple, rapid, practical, and environmentally friendly method to isolate analytes that exhibit significant differences in acidity or alkalinity from complex samples.  相似文献   

9.
The effect of the macrocyclic host, cucurbit[7]uril (CB7), on the photophysical properties of the 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI) dye have been investigated in aqueous solution by using ground‐state absorption and steady‐state and time‐resolved fluorescence measurements. All three prototropic forms of the dye (cationic, neutral, and anionic) form inclusion complexes with CB7, with the largest binding constant found for the cationic form (K≈2.4×106 M ?1). At pH≈4, the appearance of a blue emission band upon excitation of the HPBI cation in the presence of CB7 indicates that encapsulation into the CB7 cavity retards the deprotonation process of the excited cation, and hence reduces its subsequent conversion to the keto form. Excitation of the neutral form (pH≈8.5), however, leads to an increase in the keto form fluorescence, indicating an enhanced excited‐state intramolecular proton‐transfer process for the encapsulated dye. In both the ground and excited states, the two pKa values of the HPBI dye show upward shifts in the presence of CB7. The prototropic equilibrium of the CB7‐complexed dye is represented by a six‐state model, and the pH‐dependent changes in the binding constants have been analyzed accordingly. It has been observed that the calculated pKa values using this six‐state model match well with the values obtained experimentally. The changes in the pKa values in the presence of CB7 have been corroborated with the modulation of the proton‐transfer process of the dye within the host cavity.  相似文献   

10.
The supramolecular interaction of gemfibrozil with β-cyclodextrin (β-CD) was studied by spectrofluorimetry. The mechanism of the inclusion was discussed by spectrofluoremetry, infrared spectrum and ^1H NMR spectrum. The results showed that a 1 : 1 (β-CD : gemfibrozil) complex was formed with an apparent association constant of 3.844 × 10^3 L·mol^-1. Based on the enhancement of the fluorescent intensity of gemfibrozil, a spectrofluorimetric method for the determination of gemfibrozil in bulk aqueous solution in the presence of β-CD was developed. The linear range was 3.30 ng·mL^- 1 -6.00 ug·mL^-1 with the detection limit of 0.980 ng·mL^-1. There was no interference from the excipients normally used in tablet composition and the serum main compositions. The proposed method was then successfully applied to the determination of gemfibrozil in capsules and serum.  相似文献   

11.
《Analytical letters》2012,45(4):694-705
A method for the determination of paraquat by cucurbit[7]uril (CB[7]) fluorescence quenching was developed. The assay was based on the reaction of the CB[7] with acridine orange. The fluorescence intensity of acridine orange regularly increased with the addition of CB[7]. However, while an appropriate amount of paraquat was added to the CB[7]- acridine orange system, the fluorescence intensity of the system was quenched which was employed to determine paraquat. Under the optimum conditions, a linear range of 3.0–800 nmol L?1 and a detection limit of 1.61 nmol L?1 for paraquat were obtained. The simple strategy reported here offers great practical potential for the determination of pesticide residues in agricultural products.  相似文献   

12.
In weak acidic medium, interaction between papain and calf thymus DNA (ctDNA) resulted in absorption spectral change, fluorescence quenching of papain and remarkable enhancement of resonance Rayleigh scattering (RRS). The interaction types and binding modes were discussed by characteristics of RRS, absorption, fluorescence and circular dichroism spectra combining thermodynamic data. Four interaction types include electrostatic attraction, hydrophobic force, hydrogen bonding and aromatic stacking interaction. Papain interacted with the major groove of ctDNA. Aromatic stacking interaction is the main reason of change of absorption spectrum and fluorescence quenching of papain. Surface enhanced scattering effect, resonance energy transfer effect, increase of molecular volume and conformational change make contribution to RRS enhancement. The enhanced RRS intensity (ΔI) is directly proportional to the concentration of ctDNA or papain. The detection limit (3σ) is 5.2 ng·mL?1 for ctDNA and 5.6 ng·mL?1 for papain. This creates conditions for determination of papain and ctDNA.  相似文献   

13.
在KH2PO4- Na2HPO4缓冲溶液中,离子缔合物[MB]+·[B(C6H5)4]–可发射强而稳定的荧光,牛血清蛋白(BSA)能使[MB]+·[B(C6H5)4]–的荧光信号显著猝灭,聚乙二醇(PEG)对荧光信号猝灭的有强的增敏作用,加PEG比不加PEG时,ΔF(= F0-F,其中,F0与F分别为试剂空白和试液的荧光强度)值提高了9.1倍,且ΔF与BSA含量具有良好的线性关系,据此建立了新型荧光探针荧光猝灭法测定痕量蛋白质的新方法。本方法的线性范围为0.11 ~ 88.0 ag/mL,检出限:22.0 ag /mL BSA,灵敏度很高,并成功用于人血清样品中蛋白含量的测定。同时探讨了新方法的反应机理。在相同条件下,新方法可分别测定BSA、人血清白蛋白(human serum albumin,HAS)、卵蛋白(ovalbumin,OVA )、γ-球蛋白(γ-globulin,γ-G)及血清、脑脊液样品中蛋白质总量。  相似文献   

14.
Magnetic and fluorescent assemblies of iron‐oxide nanoparticles (NPs) were constructed by threading a viologen‐based ditopic ligand, DPV2+, into the cavity of cucurbituril (CB[7]) macrocycles adsorbed on the surface of the NPs. Evidence for the formation of 1:2 inclusion complexes that involve DPV2+ and two CB[7] macrocycles was first obtained in solution by 1H NMR and emission spectroscopy. DPV2+ was found to induce self‐assembly of nanoparticle arrays (DPV2+?CB[7]NPs) by bridging CB[7] molecules on different NPs. The resulting viologen‐crosslinked iron‐oxide nanoparticles exhibited increased saturation magnetization and emission properties. This facile supramolecular approach to NP self‐assembly provides a platform for the synthesis of smart and innovative materials that can achieve a high degree of functionality and complexity and that are needed for a wide range of applications.  相似文献   

15.
Chang YX  Qiu YQ  Du LM  Li CF  Guo M 《The Analyst》2011,136(20):4168-4173
A validated, simple, and sensitive fluorescence quenching method for the determination of ranitidine, nizatidine, and cimetidine in tablets and biological fluids is presented. This is the first single fluorescence method reported for the analysis of all three H(2) antagonists. The competitive reaction between the investigated drug and the palmatine probe for the occupancy of the cucurbit[7]uril (CB[7]) cavity was studied using spectrofluorometry. CB[7] was found to react with the probe to form a stable complex. The fluorescence intensity of the complex was also enhanced greatly. However, the addition of the drug dramatically quenched the fluorescence intensity of the complex. Accordingly, a new fluorescence quenching method for the determination of the studied drugs was established. The different experimental parameters affecting the fluorescence quenching intensity were studied carefully. At optimum reaction conditions, the rectilinear calibration graphs between the fluorescence quenching values (ΔF) and the medicament concentration were obtained in the concentration range of 0.04-1.9 μg mL(-1) for the investigated drugs. The limits of detection ranged from 0.013 to 0.030 μg mL(-1) at 495 nm using an excitation wavelength of 343 nm. The proposed method can be used for the determination of the three H(2) antagonists in raw materials, dosage forms and biological fluids.  相似文献   

16.
Photophysical properties of aqueous solutions of the styryl dye 4-[(E)-2-(3,4-dimethoxyphenyl)-1-ethylpyridinium] perchlorate (1) in the presence of cucurbit[n]urils (CB[n]; n = 5, 6, 8) have been studied by fluorescent spectroscopy methods. The fluorescence intensity of a 10–6 mol L–1 solution of 1 increases by a factor of 12.6 upon the formation of 1 : 1 inclusion complexes with CB[6] or 1.3 in complexes with CB[8]. Upon the formation of inclusion complexes, the average lifetime of the electronically excited state of 1 increases to about 1 ns for both CB[6] and CB[8]. On the basis of fluorescence anisotropy measurements, the rotational relaxation times were estimated to be 408, 314, and 183 ps for the complexes with CB[6], CB[8], and for unbound 1, respectively. Using the fluorescence titration method developed for the case of poorly soluble cavitands, the binding constant of 1 with CB[6] was determined to be 1.1 × 105 L mol–1. The addition of CB[5] does not lead to changes in the photophysical properties of a solution of 1, indicating the absence of complexes between CB[5] and 1. It has been found on the basis of the experimental data that the fluorescence rate constant of 1 decreases about twice in the complex with CB[8], but doubles in the complex with CB[6].  相似文献   

17.
《Analytical letters》2012,45(15):2454-2463
Manganese-doped ZnS quantum dots were synthesized through a facile process in aqueous solution using L-cysteine as a surface modifying agent. The quantum dots were characterized by transmission electron microscopy and X-ray diffraction spectroscopy, and had a favorable room-temperature phosphorescence property, with a longer emission time and a narrower emission profile than fluorescence. The phosphorescence was quenched by bisphenol A. Based on these findings, a room temperature phosphorescence quenching method was developed for the sensitive and selective detection of bisphenol A. Under the optimized conditions, the detection limit was 0.2 ng · mL?1, and the relative standard deviation was 1.14% (C = 10 ng · mL?1, n = 11). The proposed method was successfully applied to plastic products with satisfactory results. The recovery of the method was in the range of 96% to 106%.  相似文献   

18.
We designed and synthesized the three molecular tweezers 1 a – c 4+ containing an electron acceptor 4,4‐bipyridinium (BPY2+) unit in each of the two arms and an (R)‐2,2‐dioxy‐1,1‐binaphthyl (BIN) unit that plays the role of chiral centre and the hinge of the structure. Each BPY2+ unit is connected to the BIN hinge by an alkyl chain formed by two‐ ( 1 a 4+), four‐ ( 1 b 4+), or six‐CH2 ( 1 c 4+) groups. The behavior of 1 a – c 4+ upon chemical or photochemical reduction in the absence and in the presence of cucurbit[8]uril (CB[8]) or cucurbit[7]uril (CB[7]) as macrocyclic hosts for the bipyridinium units has been studied in aqueous solution. A detailed analysis of the UV/Vis absorption and circular dichroism (CD) spectra shows that the helicity of the BIN unit can be reversibly modulated by reduction of the BPY2+ units, or by association with cucurbiturils. Upon reduction of 1 a – c 4+ compounds, the formed BPY+ . units undergo intramolecular dimerization with a concomitant change in the BIN dihedral angle, which depends on the length of the alkyl spacers. The alkyl linkers also play an important role in association to cucurbiturils. Compound 1 a 4+, because of its short carbon chain, associates to the bulky CB[8] in a 1:1 ratio, whereas in the case of the smaller host compound CB[7] a 1:2 complex is obtained. Compounds 1 b 4+ and 1 c 4+, which have longer linkers, associate to two cucurbiturils regardless of their sizes. In all cases, association with CB[8] causes an increase of the BIN dihedral angle, whereas the formation of CB[7] complexes causes an angle decrease. Reduction of the CB[8] complexes results in an enhancement of the BPY+ . dimerization with respect to free 1 a – c 4+ and causes a noticeable decrease of the BIN dihedral angle, because the BPY+ . units of the two arms have to enter into the same macrocycle. The dimer formation in the CB[8] complexes characterized by a 1:2 ratio implies the release of one macrocycle showing that the binding stoichiometry of these host–guest complexes can be switched from 1:2 to 1:1 by changing the redox state of the guest. When the reduction is performed on the CB[7] complexes, dimer formation is totally inhibited, as expected because the CB[7] cavity cannot host two BPY+ . units.  相似文献   

19.
在pH为5.0-5.4的乙酸-乙酸钠缓冲溶液中,克林霉素(Clin)与钯(Ⅱ)形成螯合阳离子,它能进一步与二碘荧光素(DIF),赤藓红(Ery),曙红Y(EY)等卤代荧光素类染料反应形成1:1:1的三元离子缔合物,此时将引起吸收光谱变化和荧光猝灭,同时还导致共振瑞利散射(RRS)的急剧增强并产生新的RRS光谱,钯(Ⅱ)-克林霉素与DIF,Ery和EY形成产物的最大散射波长分别位于285,287,32 1nm处,另外还有些较弱的散射峰存在。散射增强(ΔI)与克林霉素浓度在一定范围内成正比,可用于克林霉素的定量测定。对于DIF,Ery和EY体系的线性范围和检出限分别为0.025-2.1μg•mL-1和7.8 ng•mL-1,0.053-2.4μg•mL-1和16.0 ng•mL-1;以及0.038-2.4μg•mL-1和11.0 ng•mL-1。本文研究了适宜的反应条件,考察了共存物质的影响,表明方法有较好的选择性,基于三元离子缔合物的RRS光谱,发展了一种高灵敏、简便快速测定克林霉素的新方法。文中还对离子缔合物的组成,结构和反应机理,以及离子缔合物对吸收,荧光和RRS光谱的影响进行了讨论。  相似文献   

20.
Host?guest complexes between cucurbit[7] (CB[7]) or CB[8] and diamantane diammonium ion guests 3 or 6 were studied by 1H NMR spectroscopy and X‐ray crystallography. 1H NMR competition experiments revealed that CB[7]? 6 is among the tightest monovalent non‐covalent complexes ever reported in water with Ka=7.2×1017 M ?1 in pure D2O and 1.9×1015 M ?1 in D2O buffered with NaO2CCD3 (50 mM ). The crystal structure of CB[7]? 6 allowed us to identify some of the structural features responsible for the ultratight binding, including the distance between the NMe3+ groups of 6 (7.78 Å), which allows it to establish 14 optimal ion‐dipole interactions with CB[7], the complementarity of the convex van der Waals surface contours of 6 with the corresponding concave surfaces of CB[7], desolvation of the C?O portals within the CB[7]? 6 complex, and the co‐linearity of the C7 axis of CB[7] with the N+???N+ line in 6 . This work further blurs the lines of distinction between natural and synthetic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号