首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homochiral metal–organic frameworks (MOFs) are an important class of chiral solids with potential applications in chiral recognition; however, relatively few are available. Of great importance is the availability of low‐cost, racemization‐resistant, and versatile enantiopure building blocks. Among chiral building blocks, d ‐camphoric acid is highly prolific, yet, its trans‐isomer, l ‐isocamphoric acid, has remained unknown in the entire field of solid‐state materials. Its rich yet totally untapped synthetic and structural chemistry has now been investigated through the synthesis of a large family of homochiral metal isocamphorates. The first observation of diastereoisomerism in isostructural MOFs is presented. Isocamphorate has a powerful ability to create framework topologies unexpected from common inorganic building blocks, and isocamphoric acid should allow access to hundreds of new homochiral materials.  相似文献   

2.
The reaction of the chiral dipeptide glycyl‐L(S)‐glutamate with CoII ions produces chiral ladders that can be used as rigid 1D building units. Spatial separation of these building units with linkers of different lengths allows the engineering of homochiral porous MOFs with enhanced pore sizes, pore volumes, and surface areas. This strategy enables the synthesis of a family of isoreticular MOFs, in which the pore size dictates the enantioselective adsorption of chiral molecules (in terms of their size and enantiomeric excess).  相似文献   

3.
An organocatalytic asymmetric synthesis of δ‐amino‐β‐ketoester derivatives has been developed. A chiral disulfonimide (DSI) serves as a highly efficient precatalyst for a vinylogous Mukaiyama–Mannich reaction of readily available dioxinone‐derived silyloxydienes with N‐Boc‐protected imines, delivering products in excellent yields and enantioselectivities. The synthetic utility of this reaction is illustrated in various transformations, including a new C? C bond‐forming reaction, which provide useful enantioenriched building blocks. The methodology is applied in a formal synthesis of (?)‐lasubin.  相似文献   

4.
Two new organic building units that contain dicarboxylate sites for their self‐assembly with paddlewheel [Cu2(CO2)4] units have been successfully developed to construct two isoreticular porous metal–organic frameworks (MOFs), ZJU‐35 and ZJU‐36, which have the same tbo topologies (Reticular Chemistry Structure Resource (RCSR) symbol) as HKUST‐1. Because the organic linkers in ZJU‐35 and ZJU‐36 are systematically enlarged, the pores in these two new porous MOFs vary from 10.8 Å in HKUST‐1 to 14.4 Å in ZJU‐35 and 16.5 Å in ZJU‐36, thus leading to their higher porosities with Brunauer–Emmett–Teller (BET) surface areas of 2899 and 4014 m2 g?1 for ZJU‐35 and ZJU‐36, respectively. High‐pressure gas‐sorption isotherms indicate that both ZJU‐35 and ZJU‐36 can take up large amounts of CH4 and CO2, and are among the few porous MOFs with the highest volumetric storage of CH4 under 60 bar and CO2 under 30 bar at room temperature. Their potential for high‐pressure swing adsorption (PSA) hydrogen purification was also preliminarily examined and compared with several reported MOFs, thus indicating the potential of ZJU‐35 and ZJU‐36 for this important application. Studies show that most of the highly porous MOFs that can volumetrically take up the greatest amount of CH4 under 60 bar and CO2 under 30 bar at room temperature are those self‐assembled from organic tetra‐ and hexacarboxylates that contain m‐benzenedicarboxylate units with the [Cu2(CO2)4] units, because this series of MOFs can have balanced porosities, suitable pores, and framework densities to optimize their volumetric gas storage. The realization of the two new organic building units for their construction of highly porous MOFs through their self‐assembly with [Cu2(CO2)4] units has provided great promise for the exploration of a large number of new tetra‐ and hexacarboxylate organic linkers based on these new organic building units in which different aromatic backbones can be readily incorporated into the frameworks to tune their porosities, pore structures, and framework densities, thus targeting some even better performing MOFs for very high gas storage and efficient gas separation under high pressure and at room temperature in the near future.  相似文献   

5.
The induced aggregation of achiral building blocks by a chiral species to form chiral aggregates with memorized chirality has been observed for a number of systems. However, chiral memory in isolated aggregates of achiral building blocks remains rare. One possible reason for this discrepancy could be that not much is understood in terms of designing these chiral aggregates. Herein, we report a strategy for creating such isolable chiral aggregates from achiral building blocks that retain chiral memory after the facile physical removal of the chiral templates. This strategy was used for the isolation of chiral homoaggregates of neutral achiral π‐conjugated carboxylic acids in pure aqueous solution. Under what we have termed an “interaction–substitution” mechanism, we generated chiral homoaggregates of a variety of π‐conjugated carboxylic acids by using carboxymethyl cellulose (CMC) as a mediator in acidic aqueous solutions. These aggregates were subsequently isolated from the CMC templates whilst retaining their memorized supramolecular chirality. Circular dichroism (CD) spectra of the aggregates formed in the acidic CMC solution exhibited bisignated exciton‐coupled signals of various signs and intensities that were maintained in the isolated pure homoaggregates of the achiral π‐conjugated carboxylic acids. The memory of the supramolecular chirality in the isolated aggregates was ascribed to the substitution of COOH/COOH hydrogen‐bonding interaction between the carboxylic acid groups within the aggregates for the hydrogen‐bonding interactions between the COOH groups of the building blocks and the chiral templates. We expect that this “interaction–substitution” procedure will open up a new route to isolable pure chiral aggregates from achiral species.  相似文献   

6.
Hierarchical supramolecular chiral liquid‐crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization‐induced chiral self‐assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene‐containing block copolymer (Azo‐BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo‐BCP assemblies. The supramolecular chirality of Azo‐BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

7.
Catalytic asymmetric synthesis of axially chiral o‐iodoanilides and otert‐butylanilides as useful chiral building blocks was achieved by means of binaphthyl‐modified chiral quaternary ammonium‐salt‐catalyzed N‐alkylations under phase‐transfer conditions. The synthetic utility of axially chiral products was demonstrated in various transformations. For example, axially chiral N‐allyl‐o‐iodoanilide was transformed to 3‐methylindoline by means of radical cyclization with high chirality transfer from axial chirality to C‐centered chirality. Furthermore, stereochemical information on axial chirality in otert‐butylanilides could be used as a template to control the stereochemistry of subsequent transformations. The transition‐state structure of the present phase‐transfer reaction was discussed on the basis of the X‐ray crystal structure of ammonium anilide, which was prepared from binaphthyl‐modified chiral ammonium bromide and o‐iodoanilide. The chiral tetraalkylammonium bromide as a phase‐transfer catalyst recognized the steric difference between the ortho substituents on anilide to obtain high enantioselectivity. The size and structural effects of the ortho substituents on anilide were investigated, and a wide variety of axially chiral anilides that possess various functional groups could be synthesized with high enantioselectivities. This method is the only general way to access a variety of axially chiral anilides in a highly enantioselective fashion reported to date.  相似文献   

8.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

9.
Two metal–organic frameworks (MOFs) with Zr–oxo secondary building units (SBUs) were prepared by using p,p′‐terphenyldicarboxylate (TPDC) bridging ligands pre‐functionalized with orthogonal succinic acid (MOF‐ 1 ) and maleic acid groups (MOF‐ 2 ). Single‐crystal X‐ray structure analysis of MOF‐ 1 provides the first direct evidence for eight‐connected SBUs in UiO‐type MOFs. In contrast, MOF‐ 2 contains twelve‐connected SBUs as seen in the traditional UiO MOF topology. These structural assignments were confirmed by extended X‐ray absorption fine structure (EXAFS) analysis. The highly porous MOF‐ 1 is an excellent fluorescence sensor for metal ions with the detection limit of <0.5 ppb for Mn2+and three to four orders of magnitude greater sensitivity for metal ions than previously reported luminescent MOFs.  相似文献   

10.
Circularly polarized luminescence (CPL) is attractive in understanding the excited‐state chirality and developing advanced materials. Herein, we propose a chiral reticular self‐assembly strategy to unite achiral AIEgens, chirality donors, and metal ions to fabricate optically pure AIEgen metal–organic frameworks (MOFs) as efficient CPL materials. We have found that CPL activity of the single‐crystal AIEgen MOF was generated by the framework‐enabled strong emission from AIEgens and through‐space chirality transfer from chirality donors to achiral AIEgens via metal‐ion bridges. For the first time, a dual mechano‐switched blue and red‐shifted CPL activity was achieved via ultrasonication and grinding, which enabled the rotation or stacking change of AIEgen rotors with the intact homochiral framework. This work provided not only an insightful view of the aggregation induced emission (AIE) mechanism, but also an efficient and versatile strategy for the preparation of stimuli‐responsive CPL materials.  相似文献   

11.
Molecular gauge blocks, based on 1–7, 9–11 paraxylene rings, have been synthesized as part of a homologous series of oligoparaxylenes (OPXs) with a view to providing a molecular tool box for the construction of nano architectures—such as spheres, cages, capsules, metal–organic frameworks (MOFs), metal–organic polyhedrons (MOPs) and covalent–organic frameworks (COFs), to name but a few—of well‐defined sizes and shapes. Twisting between the planes of contiguous paraxylene rings is generated by the steric hindrance associated with the methyl groups and leads to the existence of soluble molecular gauge blocks without the need, at least in the case of the lower homologues, to introduce long aliphatic side chains onto the phenylene rings in the molecules. Although soluble molecular gauge blocks with up to seven consecutive benzenoid rings have been prepared employing repeating paraxylene units, in the case of the higher homologues it becomes necessary to introduce hexyl groups instead of methyl groups onto selected phenylene rings to maintain solubility. A hexyl‐doped compound with seven substituted phenylene rings was found to be an organogelator, exhibiting thermally reversible gelation and a critical gelation concentration of 10 mM in dimethyl sulfoxide. Furthermore, control over the morphology of a series of hexyl‐doped OPXs to give microfibers, microaggregates, or nanofibers, was observed as a function of their lengths according to images obtained by scanning electron microscopy. The modular syntheses of the paraphenylene derivatives rely heavily on Suzuki–Miyaura cross‐coupling reactions. The lack of π–π conjugation in these derivatives that is responsible for their enhanced solubilities was corroborated by UV/Vis and fluorescent spectroscopy. In one particular series of model OPXs, dynamic 1H NMR spectroscopy was used to probe the stereochemical consequences of having from one up to five axes of chirality present in the same molecule. The Losanitsch sequence for the compounds with 1–3 chiral axes was established, and a contemporary mathematical way was found to describe the sequence. The development of the ways and means to make molecular gauge building blocks will have positive repercussions on the control of nanostructures in general. Their incorporation into extended structures with the MOF‐74 topology provides an excellent demonstration of the potential usefulness of these molecular gauge blocks.  相似文献   

12.
Chiral N‐dienyl lactams are crucial building blocks for the synthesis of complex organic compounds. However, their generation is rather challenging. This paper reports on a highly efficient and diastereoselective multicomponent methodology utilizing chiral a mides, a ldehydes, and d ienophiles (AAD reaction). The three components readily react under in situ generation of chiral N‐dienyl lactams which undergo a subsequent Diels–Alder reaction. Different chiral amides have been employed in the standard protocol delivering yields up to 94 %, and selectivities up to 90 % de. Moreover, DFT calculations were performed to explain the obtained selectivities.  相似文献   

13.
A C3‐symmetric benzene‐1,3,5‐tricarboxamide substituted with ethyl cinnamate was found to self‐assemble into supramolecular gels with macroscopic chirality in a DMF/H2O mixture. The achiral compound simultaneously formed left‐ and right‐handed twists in an unequal number, thus resulting in the macroscopic chirality of the gels without any chiral additives. Furthermore, ester–amide exchange reactions with chiral amines enabled the control of both the handedness of the twists and the macroscopic chirality of the gels, depending on the structures of the chiral amines. These results provide new prospects for understanding and regulating symmetry breaking in assemblies of supramolecular gels formed from achiral molecular building blocks.  相似文献   

14.
The first total synthesis of (+)‐neomarinone has been achieved by following a concise and convergent route using methyl (R)‐lactate and (R)‐3‐methylcyclohexanone as chiral building blocks. Key steps of the synthesis are the stereocontrolled formation of the two quaternary stereocenters by diastereoselective 1,4‐conjugate addition and enolate alkylation reactions, and the construction of the furanonaphthoquinone skeleton by regioselective Diels–Alder reaction between a 1,3‐bis(trimethylsilyloxy)‐1,3‐diene and a bromoquinone. The synthesis proves the relative and absolute stereochemistry of natural neomarinone.  相似文献   

15.
In this work, we have demonstrated a family of diamondoid metal–organic frameworks (MOFs) based on functionalized molecular building blocks and length‐adjustable organic linkers by using a stepwise synthesis strategy. We have successfully achieved not only “design” and “control” to synthesize MOFs, but also the functionalization of both secondary building units (SBUs) and organic linkers in the same MOF for the first time. Furthermore, the results of N2 and H2 adsorption show that their surface areas and hydrogen uptake capacities are determined by the most optimal combination of functional groups from SBUs and organic linkers, interpenetration, and free volume in this system. A member of this series, DMOF‐6 exhibits the highest surface area and H2 adsorption capacity among this family of MOFs.  相似文献   

16.
Three highly porous metal–organic frameworks (MOFs) with a uniform rht‐type topological network but hierarchical pores were successfully constructed by the assembly of triazole‐containing dendritic hexacarboxylate ligands with ZnII ions. These transparent MOF crystals present gradually increasing pore sizes upon extension of the length of the organic backbone, as clearly identified by structural analysis and gas‐adsorption experiments. The inherent accessibility of the pores to large molecules endows these materials with unique properties for the uptake of large guest molecules. The visible selective adsorption of dye molecules makes these MOFs highly promising porous materials for pore‐size‐dependent large‐molecule capture and separation.  相似文献   

17.
The highly enantioselective synthesis of dihydroisoquinoline derivatives from aromatic sulfonated imines tethered with an alkyne moiety, through a one‐pot asymmetric relay catalysis of chiral‐phosphine and gold catalysts, is reported. Enantiomerically enriched dihydroisoquinoline derivatives were afforded in good yields and good‐to‐excellent ee values under mild conditions, based on the asymmetric aza‐Morita‐Baylis–Hillman reaction. Dihydroisoquinoline derivatives containing two chiral centers were also synthesized through further transformations.  相似文献   

18.
Mixing molecular building blocks in the solid solution manner is a valuable strategy to obtain structures and properties in between the isostructural parent metal–organic frameworks (MOFs). We report nonlinear/synergistic solid‐solution effects using highly related yet non‐isostructural, phosphorescent CuI triazolate frameworks as parent phases. Near the phase boundaries associated with conformational diversity and ligand heterogeneity, the porosity (+150 %) and optical O2 sensitivity (410 times, limit of detection 0.07 ppm) can be drastically improved from the best‐performing parent MOFs and even exceeds the records hold by precious‐metal complexes (3 ppm) and C70 (0.2 ppm).  相似文献   

19.
Metal–organic frameworks (MOFs) are shown to be good examples of a new class of crystalline porous materials for guest encapsulation. Since the encapsulation/release of guest molecules in MOF hosts is a reversible process in nature, how to prevent the leaching of guests from the open pores with minimal and nondestructive modifications of the structure is a critical issue. To address this issue, we herein propose a novel strategy of encapsulating guests by introducing size‐matching organic ligands as bolts to lock the pores of the MOFs through deliberately anchoring onto the open metal sites in the pores. Our proposed strategy provides a mechanical way to prevent the leaching of guests and thereby has less dependence on the specific chemical environment of the hosts, thus making it applicable for a wide variety of existing MOFs once the size‐matching ligands are employed.  相似文献   

20.
In recent years, metal–organic frameworks (MOFs) have become an area of intense research interest because of their adjustable pores and nearly limitless structural diversity deriving from the design of different organic linkers and metal structural building units (SBUs). Among the recent great challenges for scientists include switchable MOFs and their corresponding applications. Switchable MOFs are a type of smart material that undergo distinct, reversible, chemical changes in their structure upon exposure to external stimuli, yielding interesting technological applicability. Although the process of switching shares similarities with flexibility, very limited studies have been devoted specifically to switching, while a fairly large amount of research and a number of Reviews have covered flexibility in MOFs. This Review focuses on the properties and general design of switchable MOFs. The switching activity has been delineated based on the cause of the switching: light, spin crossover (SCO), redox, temperature, and wettability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号