首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 8 毫秒
1.
The development of fluorescent probes to image forces in cells is an important challenge in chemistry and biology. Planarizable push‐pull probes have been introduced recently for this purpose. To provide most valuable information on forces in complex systems, these mechanosensitive ‘flipper’ probes will have to be localized by molecular recognition of targets of interest. Here we report fluorescent flippers that selectively recognize gangliosides on the surface of lipid bilayer membranes by formation of dynamic covalent boronate esters. The original flipper probes were equipped with 2‐fluorophenyl boronic acids and benzoboroxoles using consecutive triazole and oxime ligation. Evaluation was done in large unilamellar vesicles composed of EYPC/SM/CL/GM 40:40‐x:20:x to obtain mixed membranes with separate liquid‐disordered (Ld) and ganglioside (GM) containing liquid‐ordered (Lo) domains. With increasing GM concentration, fluorescence intensities increased and excitation maximum shifted to the red. Deconvolution of the spectra confirmed that these changes originate from a migration of the flipper probes from Ld to Lo domains upon binding to the gangliosides and thus the planarization in the more ordered environment. Control mechanophores without boronic acids failed to show the same response, and fructose partially inhibited the ganglioside sensitivity. These results demonstrate that it is possible to selectively accumulate mechanosensitive flipper probes in Lo domains and, more generally, that probe localization in complex membranes is possible and matters.  相似文献   

2.
This article assembles pertinent insights behind the concept of planarizable push–pull probes. As a response to the planarization of their polarized ground state, a red shift of their excitation maximum is expected to report on either the disorder, the tension, or the potential of biomembranes. The combination of chromophore planarization and polarization contributes to various, usually more complex processes in nature. Examples include the color change of crabs or lobsters during cooking or the chemistry of vision, particularly color vision. The summary of lessons from nature is followed by an overview of mechanosensitive organic materials. Although often twisted and sometimes also polarized, their change of color under pressure usually originates from changes in their crystal packing. Intriguing exceptions include the planarization of several elegantly twisted phenylethynyl oligomers and polymers. Also mechanosensitive probes in plastics usually respond to stretching by disassembly. True ground‐state planarization in response to molecular recognition is best exemplified with the binding of thoughtfully twisted cationic polythiophenes to single‐ and double‐stranded oligonucleotides. Molecular rotors, en vogue as viscosity sensors in cells, operate by deplanarization of the first excited state. Pertinent recent examples are described, focusing on λ‐ratiometry and intracellular targeting. Complementary to planarization of the ground state with twisted push–pull probes, molecular rotors report on environmental changes with quenching or shifts in emission rather than absorption. The labeling of mechanosensitive channels is discussed as a bioengineering approach to bypass the challenge to create molecular mechanosensitivity and use biological systems instead to sense membrane tension. With planarizable push–pull probes, this challenge is met not with twistome screening, but with “fluorescent flippers,” a new concept to insert large and bright monomers into oligomeric probes to really feel the environment and also shine when twisted out of conjugation.  相似文献   

3.
ABSTRACT

Design, synthesis and evaluation of push-pull N,N′-diphenyl-dihydrodibenzo[a,c]phenazines are reported. Consistent with theoretical predictions, donors and acceptors attached to the bent mechanophore are shown to shift absorption maxima to either red or blue, depending on their positioning in the chromophore. Redshifted excitation of push-pull fluorophores is reflected in redshifted emission of both bent and planar excited states. The intensity ratios of the dual emission in more and less polar solvents imply that excited-state (ES) planarization decelerates with increasing fluorophore macrodipole, presumably due to attraction between the wings of closed papillons. ES planarization of highly polarisable papillons is not observed in lipid bilayer membranes. All push-pull papillon amphiphiles excel with aggregation-induced emission (AIE) from bent ES as micelles in water and mechanosensitivity in viscous solvents. They are not solvatochromic and only weakly fluorescent (QY < 4%).  相似文献   

4.
5.
6.
7.
Hydrogen sulfide (H2S) is connected with various physiological and pathological functions. However, understanding the important functions of H2S remains challenging, in part because of the lack of tools for detecting endogenous H2S. Herein, compounds Ratio‐H2S 1/2 are the first FRET‐based mitochondrial‐targetable dual‐excitation ratiometric fluorescent probes for H2S on the basis of H2S‐promoted thiolysis of dinitrophenyl ether. With the enhancement of H2S concentration, the excitation peak at λ≈402 nm of the phenolate form of the hydroxycoumarin unit drastically increases, whereas the excitation band centered at λ≈570 nm from rhodamine stays constant and can serve as a reference signal. Thus, the ratios of fluorescence intensities at λ=402 and 570 nm (I402/I570) exhibit a drastic change from 0.048 in the absence of H2S to 0.36 in the presence of 180 μM H2S; this is a 7.5‐fold variation in the excitation ratios. The favorable properties of the probe include the donor and acceptor excitation bands, which exhibit large excitation separations (up to 168 nm separation) and comparable excitation intensities, high sensitivity and selectivity, and function well at physiological pH. In addition, it is demonstrated that the probe can localize in the mitochondria and determine H2S in living cells. It is expected that this strategy will lead to the development of a wide range of mitochondria‐targetable dual‐excitation ratiometric probes for other analytes with outstanding spectral features, including large separations between the excitation wavelengths and comparable excitation intensities.  相似文献   

8.
9.
Principle has it that even the most advanced super‐resolution microscope would be futile in providing biological insight into subcellular matrices without well‐designed fluorescent tags/probes. Developments in biology have increasingly been boosted by advances of chemistry, with one prominent example being small‐molecule fluorescent probes that not only allow cellular‐level imaging, but also subcellular imaging. A majority, if not all, of the chemical/biological events take place inside cellular organelles, and researchers have been shifting their attention towards these substructures with the help of fluorescence techniques. This Review summarizes the existing fluorescent probes that target chemical/biological events within a single organelle. More importantly, organelle‐anchoring strategies are described and emphasized to inspire the design of new generations of fluorescent probes, before concluding with future prospects on the possible further development of chemical biology.  相似文献   

10.
《化学:亚洲杂志》2017,12(16):2098-2103
The development of a fluorescent probe to distinguish between cysteine (Cys) and homocysteine (Hcy) is always a challenge owing to their structural similarity, and the simultaneous detection of Cys and Hcy by utilizing different emission channels is especially difficult. In this work, we designed and synthesized a new fluorescent probe to differentiate between Cys and Hcy on the basis of a coumarin derivative with a chlorine atom and an α,β‐unsaturated aldehyde. Cys and Hcy induced different cascade reactions with the probe, which led to different products with distinct photophysical properties. The nonfluorescent probe responded to Cys and emitted strong blue fluorescence, whereas it reacted with Hcy and generated yellow fluorescence without interference from glutathione. In addition, the probe was successfully applied to distinguish between Cys and Hcy in living cells.  相似文献   

11.
A tetraphenylethene (TPE) derivative substituted with the electron‐acceptor 1,3‐indandione (IND) group was designed and prepared. The targeted IND‐TPE reserves the intrinsic aggregation‐induced emission (AIE) property of the TPE moiety. Meanwhile, owing to the decorated IND moiety, IND‐TPE demonstrates intramolecular charge‐transfer process and pronounced solvatochromic behavior. When the solvent is changed from apolar toluene to highly polar acetonitrile, the emission peak redshifts from 543 to 597 nm. IND‐TPE solid samples show an evident mechanochromic process. Grinding of the as‐prepared powder sample induces a redshift of emission from green (peak at 515 nm) to orange (peak at 570 nm). The mechanochromic process is reversible in multiple grinding–thermal annealing and grinding–solvent‐fuming cycles, and the emission of the solid sample switches between orange (ground) and yellow (thermal/solvent‐fuming‐treated) colors. The mechanochromism is ascribed to the phase transition between amorphous and crystalline states. IND‐TPE undergoes a hydrolysis reaction in basic aqueous solution, thus the red‐orange emission can be quenched by OH? or other species that can induce the generation of sufficient OH?. Accordingly, IND‐TPE has been used to discriminatively detect arginine and lysine from other amino acids, due to their basic nature. The experimental data are satisfactory. Moreover, the hydrolyzation product of IND‐TPE is weakly emissive in the resultant mixture but becomes highly blue‐emissive after the illumination for a period by UV light. Thus IND‐TPE can be used as a dual‐responsive fluorescent probe, which may extend the application of TPE‐based molecular probes in chemical and biological categories.  相似文献   

12.
Alkaline phosphatase (ALP) is associated with many diseases, and its accurate detection is of great significance. Fluorescent compounds with aggregation‐induced emission (AIE) feature show beneficial advantages for serving as fluorescent probes. Herein, an AIE‐active “turn on” probe for ALP detection was synthesized through incorporating a strong electron‐withdrawing group (cyano) in the middle and the recognition moiety phosphate group at the end, thereby rendering a D–A–D structure with a relatively high conjugation degree and good water solubility. It was found that the probe TPE‐CN‐pho is highly sensitive to ALP in aqueous solution. In the presence of ALP, the hydrophilic phosphate group on the probe is rapidly removed, resulting in a decrease in water solubility and subsequent formation of aggregates, thereby achieving aggregation‐induced emission. Moreover, the probe TPE‐CN‐pho has also been successfully applied to imaging ALP in living cells.  相似文献   

13.
A desirable goal is to synthesize easily accessible and highly K+/Na+‐selective fluoroionophores to monitor physiological K+ levels in vitro and in vivo. Therefore, highly K+/Na+‐selective ionophores have to be developed. Herein, we obtained in a sequence of only four synthetic steps a set of K+‐responsive fluorescent probes 4 , 5 and 6 . In a systematic study, we investigated the influence of the alkoxy substitution in ortho position of the aniline moiety in π‐conjugated aniline‐1,2,3‐triazole‐coumarin‐fluoroionophores 4 , 5 and 6 [R=MeO ( 4 ), EtO ( 5 ) and iPrO ( 6 )] towards the K+‐complex stability and K+/Na+ selectivity. The highest K+‐complex stability showed fluoroionophore 4 with a dissociation constant Kd of 19 mm , but the Kd value increases to 31 mm in combined K+/Na+ solutions, indicating a poor K+/Na+ selectivity. By contrast, 6 showed even in the presence of competitive Na+ ions equal Kd values (KdK+=45 mm and KdK+/Na+=45 mm ) and equal K+‐induced fluorescence enhancement factors (FEFs=2.3). Thus, the fluorescent probe 6 showed an outstanding K+/Na+ selectivity and is a suitable fluorescent tool to measure physiological K+ levels in the range of 10–80 mm in vitro. Further, the isopropoxy‐substituted N‐phenylaza[18]crown‐6 ionophore in 6 is a highly K+‐selective building block with a feasible synthetic route.  相似文献   

14.
15.
A series of Zn2+‐selective two‐photon fluorescent probes (AZnM1−AZnN) that had a wide range of dissociation constants (KdTP=8 nm‐ 12 μM ) were synthesized. These probes showed appreciable water solubility (>3 μM ), cell permeability, high photostability, pH insensitivity at pH>7, significant two‐photon action cross‐sections (86–110 GM) upon complexation with Zn2+, and can detect the Zn2+ ions in HeLa cells and in living tissue slices of rat hippocampal at a depth of >80 μm without mistargeting and photobleaching problems. These probes can potentially find application in the detection of various amounts of Zn2+ ions in live cells and intact tissues.  相似文献   

16.
Herein, we develop a convenient method to facilitate the solution‐phase fluorescent labelling of peptides based on the chemoselective acylation of α‐hydrazinopeptides. This approach combines the advantages of using commercially available amine‐reactive dyes and very mild conditions, which are fully compatible with the chemical sensitivity of the dyes. The usefulness of this approach was demonstrated by the labelling of apelin‐13 peptide. Various fluorescent probes were readily synthesized, enabling the rapid optimization of their affinities for the apelin receptor. Thus, the first far‐red fluorescent ligand with sub‐nanomolar affinity for the apelin receptor was characterized and shown to track the receptor efficiently in living cells by fluorescence confocal microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号