首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the first generation and characterization of elusive Breslow intermediates derived from aromatic N‐heterocyclic carbenes (NHCs), namely benzimidazolin‐2‐ylidenes (NMR, X‐ray analysis) and thiazolin‐2‐ylidenes (NMR). In the former case, the diamino enols were generated by reaction of the free N,N‐bis(2,6‐diisopropylphenyl)‐ and N,N‐bis(mesityl)‐substituted benzimidazolin‐2‐ylidenes with aldehydes while the dimer of 3,4,5‐trimethylthiazolin‐2‐ylidene served as the starting material in the latter case. The unambiguous NMR identification of the first thiazolin‐2‐ylidene‐based Breslow intermediate rests on double 13C labeling of both the NHC and the aldehyde component. The acyl anion reactivity was confirmed by benzoin formation with excess aldehyde.  相似文献   

2.
The nitridorhenium(V) complexes [ReNCl2(PR2Ph)3] (R = Me, Et) react with the N‐heterocyclic carbenes (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐5‐ylidene (LEt) or 1,3,4,5‐tetramethylimidazole‐2‐ylidene (LMe) in absolutely dry THF under complete replacement of the equatorial coordination sphere. The resulting [ReNCl(LR)4]+ complexes (LR = LMe, LEt) are moderately stable as solids and in solution, but decompose in hot methanol under formation of [ReO2(LR)4]+ complexes. With 1,3‐diisopropyl‐4,5‐dimethylimidazole‐5‐ylidene (Li‐Pr), the loss of the nitrido ligand and the formation of a dioxo species is more rapid and no nitridorhenium intermediate could be isolated. The Re‐C bond lengths in [ReNCl(LEt)4]Cl of approximately 2.195Å are relatively long and indicate mainly σ‐bonding in the electron‐deficient d2 system under study. The hydrolysis of the nitrido complexes proceeds via the formation of [ReO3N]2? anions as could be verified by the isolation and structural characterization of the intermediates [{ReN(PMe2Ph)3}{ReO3N}]2 and [{ReN(OH2)(LEt)2}2O][ReO3N].  相似文献   

3.
Six new 1,3‐diorganylimidazolidin‐2‐ylidene (NHC) gold(I) complexes of the type [Au(NHC)2]+ (1–6), were synthesized by reacting [AuCl(PPh)3] with 1,3‐dimesitylimidazolidin‐2‐ylidene or bis(1,3‐dialkylimidazolidin‐2‐ylidene). The complexes 1–6 were fully characterized by elemental analyses and spectroscopic data. The placement of mesityl or para‐substituted benzyl groups on the nitrogen atoms of the ring of the complexes leads to the particularly active antibacterial agents evaluated in this work. It is worth noting that the p‐methoxybenzyl derivative (2) inhibited the growth of Pseudomona aeruginosa, Staphylococcus epidermidis, Staphylococcus aureus and Enterococcus faecalis with minimum inhibitory concentration (MIC) values of 3.12 µg ml?1, 6.25 µg ml?1, 3.12 µg ml?1 and 3.12 µg ml?1 respectively. In contrast, the analogous p‐dimethylaminobenzyl derivative (3) is effective only against Escherichia coli (MIC = 3.12 µg ml?1). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The title compound, C14H18INO, crystallizes as +sc/+sp/+sc 2‐iodoanilide molecules (and racemic opposites) and shows significant intermolecular I...O interactions in the solid state, forming dimeric pairs about centres of symmetry. Under asymmetric Heck conditions, the S enantiomer of the dihydroindol‐2‐one was obtained using (R)‐(+)‐2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl [(R)‐BINAP], suggesting a mechanism that proceeds by oxidative addition to give the title (P) enantiomer of the compound and pro‐S coordination of the Re face of the alkene in a conformation similar to that defined crystallographically, except that rotation about the C—C bond of the butenyl group is required.  相似文献   

6.
In the crystal structures of both title compounds, [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]nickel(II) [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]nickel(II) chloride methanol disolvate, [Ni(C26H25.5N3O3)]2Cl·2CH4O, and [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]zinc(II) perchlorate [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]zinc(II) methanol trisolvate, [Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4O, the 3d metal ion is in an approximately octahedral environment composed of three facially coordinated imine N atoms and three phenol O atoms. The two mononuclear units are linked by three phenol–phenolate O—H...O hydrogen bonds to form a dimeric structure. In the Ni compound, the asymmetric unit consists of one mononuclear unit, one‐half of a chloride anion and a methanol solvent molecule. In the O—H...O hydrogen bonds, two H atoms are located near the centre of O...O and one H atom is disordered over two positions. The NiII compound is thus formulated as [Ni(H1.5L)]2Cl·2CH3OH [H3L is 1,3‐bis(2‐hydroxybenzylidene)‐2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methylpropane‐1,3‐diamine]. In the analogous ZnII compound, the asymmetric unit consists of two crystallographically independent mononuclear units, one perchlorate anion and three methanol solvent molecules. The mode of hydrogen bonding connecting the two mononuclear units is slightly different, and the formula can be written as [Zn(H2L)]ClO4·[Zn(HL)]·3CH3OH. In both compounds, each mononuclear unit is chiral with either a Δ or a Λ configuration because of the screw coordination arrangement of the achiral tripodal ligand around the 3d metal ion. In the dimeric structure, molecules with Δ–Δ and Λ–Λ pairs co‐exist in the crystal structure to form a racemic crystal. A notable difference is observed between the M—O(phenol) and M—O(phenolate) bond lengths, the former being longer than the latter. In addition, as the ionic radius of the metal ion decreases, the M—O and M—N bond distances decrease.  相似文献   

7.
In the title compounds, C12H12N2O2, (I), and C17H14N2O2, (II), respectively, the indole rings are planar and the vinyl groups lie out of the indole planes, making dihedral angles of 33.48 (5) and 41.31 (8)°, respectively. In (II), the dihedral angle between the phenyl and indole ring planes is 32.06 (6)°. In both mol­ecules, the double bond connecting the methyl­nitro­vinyl group and the indole nucleus adopts an E configuration. Notwithstanding the differences in space group [C2/c for (I) and P212121 for (II)], the mode of packing of compounds (I) and (II) is determined by similar inter­molecular N—H⋯O hydrogen‐bonding inter­actions, forming chains that run parallel to [101] in (I) and [001] in (II).  相似文献   

8.
9.
10.
Co(CH3)(PMe3)4 forms 100 % regioselectively with (2‐(2‐diphenylphosphanyl)phenyl)‐1,3‐dioxalane and 2‐diphenylphosphanyl‐pyridine, by elimination of methane, the four‐membered metallacycles Co{(C3O2HC6H3)P(C6H5)2}(PMe3)3 ( 1 ) and Co{(CNC4H3)P(C6H5)2}(PMe3)3 ( 4 ). The regioselectivity is independent of the steric requirement of the ortho substituent in the 2‐diphenylphosphanylaryl‐ligands. Oxidative addition with iodomethane transforms 1 and 4 into octahedral, diamagnetic low‐spin d6 complexes Co(CH3)I‐{(C3O2HC6H3)P(C6H5)2}(PMe3)2 ( 2 ) and Co(CH3)I‐{(CNC4H3)P(C6H5)2}(PMe3)2 ( 5 ). Under an atmosphere of carbon monoxide, insertion into the Co‐C bond results in ring expansion by forming the new assembled phosphanylbenzoyl complexes Co{(C4O3HC6H3)‐P(C6H5)2}CO(PMe3)2 ( 3 ) and Co{(OCNC4H3)P(C6H5)2}CO(PMe3)2 ( 6 ). The three different types of cobaltacycles are supported by X‐ray diffraction of 1 , 3 , 5 and 6 .  相似文献   

11.
The title compound, [Fe(C5H5)(C21H21O3)], was obtained from successive Stobbe condensations between ketones and di­methyl succinate. The succinic anhydride five‐membered ring is distorted significantly from planarity, with the buta­diene moiety being twisted by 49.3 (2)° from planarity and the C atoms at the succinic anhydride end of the alkene bonds showing significant pyramidalization. The cyclo­penta­diene rings of the ferrocenyl moiety adopt an almost eclipsed conformation.  相似文献   

12.
(3E,5S)‐1‐Benzoyl‐5‐[(benzoyloxy)methyl]‐3‐[(dimethylamino)methylidene]pyrrolidin‐2‐one ( 9 ) was prepared in two steps from commercially available (S)‐5‐(hydroxymethyl)pyrrolidin‐2‐one ( 7 ) (Scheme 1). Compound 9 gave, in one step, upon treatment with various C,N‐ and C,O‐1,3‐dinucleophiles 10 – 18 , the corresponding 3‐(quinolizin‐3‐yl)‐ and 3‐(2‐oxo‐2H‐pyran‐3‐yl)‐substituted (2S)‐2‐(benzoylamino)propyl benzoates 19 – 27 (Schemes 1 and 2).  相似文献   

13.
In the title compound, also known as N‐carbamoyl‐l ‐proline, C6H10N2O3, the pyrrolidine ring adopts a half‐chair conformation, whereas the carboxyl group and the mean plane of the ureide group form an angle of 80.1 (2)°. Molecules are joined by N—H...O and O—H...O hydrogen bonds into cyclic structures with graph‐set R22(8), forming chains in the b‐axis direction that are further connected via N—H...O hydrogen bonds into a three‐dimensional network.  相似文献   

14.
A Pd(dba)2–P(OEt)3 combination allowed the silastannation of arylacetylenes, 1‐hexyne or propargyl alcohols with tributyl(trimethylsilyl)stannane to take place at room temperature, producing (Z)‐2‐silyl‐1‐stannyl‐1‐substituted ethenes in high yields. Novel silyl(stannyl)ethenes were fully characterized by 1H‐, 13C‐, 29Si‐ and 119Sn‐NMR as well as infrared and mass analyses. Treatment of a series of (Z)‐1‐aryl‐2‐silyl‐1‐stannylethenes and (Z)‐1‐(3‐pyridyl)‐2‐silyl‐1‐stannylethene with hydrochloric acid or hydroiodic acid in the presence of tetraethylammonium chloride (TEACl) or tetrabutylammonium iodide (TBAI) led to the exclusive formation of (E)‐trimethyl(2‐arylethenyl)silanes with high stereoselectivity. A similar reaction of (Z)‐1‐(2‐anisyl)‐2‐silyl‐1‐stannylethene also produced E‐type trimethyl[2‐(2‐anisyl)ethenyl]silane, while (Z)‐trimethyl [2‐(2‐pyridyl)ethenyl]silane was produced exclusively from (Z)‐1‐(2‐pyridyl)‐2‐silyl‐1‐stannylethene. Protodestannylation of (Z)‐1‐[hydroxy(phenyl)methyl]‐2‐silyl‐1‐stannylethene with trifluoroacetic acid took place via the β‐elimination of hydroxystannane, providing trimethyl(3‐phenylpropa‐1,2‐dienyl)silane quite easily. The destannylation products were also fully characterized. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The title compounds, C20H17NO3S, (I), and C19H15NO2S, (II), were prepared by the reaction of benzo[b]thiophene‐2‐carbaldehyde with (3,4,5‐trimethoxyphenyl)acetonitrile and (3,4‐dimethoxyphenyl)acetonitrile, respectively, in the presence of methanolic potassium hydroxide. In (I), the C=C bond linking the benzo[b]thiophene and the 3,4,5‐trimethoxyphenyl units has E geometry, with dihedral angles between the plane of the bridging unit and the planes of the two adjacent ring systems of 5.2 (3) and 13.1 (2)°, respectively. However, in (II), the C=C bond has Z geometry, with dihedral angles between the plane of the bridging unit and the planes of the adjacent benzo[b]thiophene and 3,4‐dimethoxyphenyl units of 4.84 (17) and 76.09 (7)°, respectively. There are no significant intermolecular hydrogen‐bonding interactions in the packing of (I) and (II). The packing is essentially stabilized via van der Waals forces.  相似文献   

16.
17.
18.
The title compound, [Cu8(C15H10N3O3S)4Cl4(C3H7NO)2]·2C3H7NO, consisting of eight CuII cations, four trianionic 1‐(2‐oxidobenzoyl)‐2‐(2‐oxo‐2‐phenylethanethioyl)hydrazine‐1,2‐diide ligands, four chloride ligands and two coordinated and two solvent dimethylformamide molecules, crystallizes with the octanuclear molecule located on an inversion centre. The two halves of the molecule are connected by two bridging Cl atoms. This is the first example of an octanuclear complex based on a thiosemicarbazone‐derived ligand.  相似文献   

19.
The reaction of dialkyl acetylenedicarboxylates 4 with 1‐aryl‐2‐[(3‐arylquinoxalin‐2(1H)‐ylidene)ethanones 3 in the presence of Ph3P leads to dialkyl (2Z)‐2‐[(E)‐1‐aryl‐2‐(3‐arylquinoxalin‐2‐yl)ethenyl]but‐2‐enedioates 1 in good yields.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号