首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The one‐pot sequential synthesis of (?)‐oseltamivir has been achieved without evaporation or solvent exchange in 36 % yield over seven reactions. The key step was the asymmetric Michael reaction of pentan‐3‐yloxyacetaldehyde with (Z)‐N‐2‐nitroethenylacetamide, catalyzed by a diphenylprolinol silyl ether. The use of a bulky O‐silyl‐substituted diphenylprolinol catalyst, chlorobenzene as a solvent, and HCO2H as an acid additive, were key to produce the first Michael adduct in both excellent yield and excellent diastereo‐ and enantioselectivity. Investigation into the effect of acid demonstrated that an acid additive accelerates not only the EZ isomerization of the enamines derived from pentan‐3‐yloxyacetaldehyde with diphenylprolinol silyl ether, but also ring opening of the cyclobutane intermediate and the addition reaction of the enamine to (Z)‐N‐2‐nitroethenylacetamide. The transition‐state model for the Michael reaction of pentan‐3‐yloxyacetaldehyde with (Z)‐N‐2‐nitroethenylacetamide was proposed by consideration of the absolute configuration of the major and minor isomers of the Michael product with the results of the Michael reaction of pentan‐3‐yloxyacetaldehyde with phenylmaleimide and naphthoquinone.  相似文献   

2.
Lewis acid‐catalyzed reactions of 2‐substituted cyclopropane 1,1‐dicarboxylates with 2‐naphthols is reported. The reaction exhibits tunable selectivity depending on the nature of Lewis acid employed and proceed as a dearomatization/rearomatization sequence. With Bi(OTf)3 as the Lewis acid, a highly selective dehydrative [3+2] cyclopentannulation takes place leading to the formation of naphthalene‐fused cyclopentanes. Interestingly, engaging Sc(OTf)3 as the Lewis acid, a Friedel–Crafts‐type addition of 2‐naphthols to cyclopropanes takes place, thus affording functionalized 2‐naphthols. Both reactions furnished the target products in high regioselectivity and moderate to high yields.  相似文献   

3.
Substituted naphthofurans and benzofurans are easily accessible by treatment of naphthols/substituted phenols with nitroallylic acetates through a substitution–elimination process promoted by cesium carbonate. Reactions between naphthols and aromatic/heteroaromatic‐substituted nitroallylic acetates gave the desired functionalized naphthofurans in high to excellent chemical yields (14–97 %). On the other hand, treatment of phenol derivatives (i.e., 3‐dimethylamino‐, 3‐methoxy‐, and 3,5‐dimethoxyphenol) with various nitroallylic acetates afforded the corresponding benzofurans in moderate to good chemical yields (24–91 %). The reaction proceeded through an interesting Friedel–Crafts SN2′ process followed by intramolecular oxa‐Michael cyclization and subsequent aromatization. A plot of log (k/kH) against Hammett constants σp showed satisfactory linearity with a positive ρ value, indicating that the initial Friedel–Crafts‐type SN2′ process constituted the rate‐determining step. This methodology has been applied to the synthesis of various novel C2 and C3 symmetric bis‐ and trisfurans by using catechol and phloroglucinol as the nucleophilic partners. The reactivity decreased when alkyl‐substituted nitroallylic acetate systems were used. This might be related to the decreased electrophilic character of these substrates.  相似文献   

4.
The new sequential stereoselective synthesis of diversely substituted 9H-fluoren-9-ones by ortho-lithiation/Bu3SnCl quench of unprotected benzoic acids followed by Stille cross-coupling reaction and remote metalation is reported.  相似文献   

5.
The efficient and highly stereoselective syntheses of a variety of (Z)‐configured, substituted α‐(hydroxymethyl) ‐ β‐iodo‐acrylates from prop‐2‐ynoate and various aldehydes was achieved. The synthetic protocol involves a simple one‐pot coupling reaction under mild conditions, promoted by MgI2, which serves both as a Lewis acid and iodine source for a Baylis? Hillman‐type reaction. All adducts were generated in good‐to‐excellent yields, the (Z)‐isomers being formed in high selectivity (>98%). The conversion of methyl prop‐2‐ynoate into an active ‘β‐iodo allenolate’ intermediate, which then nucleophilically attacks an aldehyde, is proposed as a plausible reaction mechanism.  相似文献   

6.
A metal‐free C(sp2)–C(sp2) cross‐coupling approach to highly congested (E)‐α‐naphtholylenals from simple naphthols and enals is described. The mild reaction conditions with pyridine hydrobromideperbromide (PHBP) as the bromination reagent in the presence of piperidine or diphenylprolinol trimethylsilyl (TMS) ether as promoters enable the process in good yields and with high chemoselectivity, regioselectivity, and stereoselectivity. The process involves an unprecedented pathway of in situ regioselective 4‐bromination of 1‐naphthols and the subsequent unusual aromatic nucleophilic substitution of the resulting 4‐bromo‐1‐naphthols with the α‐C(sp2) of enals through a Michael‐type Friedel–Crafts alkylation–dearomatization followed by a cyclopropanation ring‐opening cascade process. The noteworthy features of this strategy are highlighted by the highly efficient creation of a C(sp2)–C(sp2) bond from readily available unfunctionalized naphthols and enals catalyzed by non‐metal, readily available cyclic secondary amines under mild reaction conditions.  相似文献   

7.
The enynyl‐substituted 2,3‐dihydroisoxazoles (‘isoxazolines') 9 – 14 were prepared by highly (Z)‐selective Peterson olefination reaction from the corresponding carbaldehydes 6 – 8 . On short‐time thermolysis (280 – 406°/10 s) the TMS derivatives 9 – 11 give rise to the annulated pyrrolines 18 – 20 , which, in some cases, suffer CH4 elimination affording the pyrroles 15 – 17 . In contrast, thermolysis of the terminal alkyne derivatives 12 – 14 leads to the bicyclic compounds 21 – 23 . The reaction pathways are discussed on the basis of the formation of conjugated azomethine ylides as key intermediates, which either undergo a 1,5‐cyclization to 18 – 20 or a 1,7‐ring‐closure affording cycloallene intermediates of type V , which are further transformed into the azepino pyrroles 21 – 23 .  相似文献   

8.
An Ir‐catalyzed intermolecular asymmetric dearomatization reaction of β‐naphthols with allyl alcohols or allyl ethers was developed. When an iridium catalyst generated from [Ir(COD)Cl]2 (COD=cyclooctadiene) and a chiral P/olefin ligand is employed, highly functionalized β‐naphthalenone compounds bearing an all‐carbon‐substituted quaternary chiral center were obtained in up to 92 % yield and 98 % ee . The direct utilization of allyl alcohols as electrophiles represents an improvement from the viewpoint of atom economy. Allyl ethers were found to undergo asymmetric allylic substitution reaction under Ir catalysis for the first time. The diverse transformations of the dearomatized product to various motifs render this method attractive.  相似文献   

9.
吕茂云  王开亮  汪清民  黄润秋 《中国化学》2008,26(12):2241-2248
将三氯化铁应用于Z或E-2,3-二取代苯基丙烯酸酯的分子内氧化偶联合成多甲氧基取代的菲衍生物,该反应在室温下以很高的产率得到偶联产物。使用廉价无毒的三氯化铁为氧化剂及温和的反应条件能方便快速地大量制备娃儿藤碱合成的重要中间体—多甲氧基取代的菲衍生物。  相似文献   

10.
Radical formation is the initial step for conventional radical chemistry. Reported herein is a unified strategy to generate radicals in situ from aromatic β‐ketoesters by using a photocatalyst. Under visible‐light irradiation, a small amount of photocatalyst fac‐Ir(ppy)3 generates a transient α‐carbonyl radical and persistent ketyl radical in situ. In contrast to the well‐established approaches, neither stoichiometric external oxidant nor reductant is required for this reaction. The synthetic utility is demonstrated by pinacol coupling of ketyl radicals and benzannulation of α‐carbonyl radicals with alkynes to give a series of highly substituted 1‐naphthols in good to excellent yields. The readily available photocatalyst, mild reaction conditions, broad substrate scope, and high functional‐group tolerance make this reaction a useful synthetic tool.  相似文献   

11.
In this study, we report the harnessing of new reactivity of N,O‐acetals in an aminocatalytic fashion for organic synthesis. Unlike widely used strategies requiring the use of acids and/or elevated temperatures, direct replacement of the amine component of the N,O‐acetals by carbon‐centered nucleophiles for C?C bond formation is realized under mild reaction conditions. Furthermore, without necessary preformation of the N,O‐acetals, an amine‐catalyzed in situ formation of N,O‐acetals is developed. Coupling both reactions into a one‐pot operation enables the achievement of a catalytic process. We demonstrate the employment of simple anilines as promoters for the cyclization–substitution cascade reactions of trans‐2‐hydroxycinnamaldehydes with various carbonic nucleophiles including indoles, pyrroles, naphthols, phenols, and silyl enol ethers. The process offers an alternative approach to structurally diverse, “privileged” 2‐substituted 2H‐chromenes. The synthetic power of the new process is furthermore shown by its application in a 2‐step synthesis of the natural product candenatenin E and for the facile installation of 2‐substituted 2H‐chromene moieties into biologically active indoles.  相似文献   

12.
An asymmetric synthesis of the diterpenoid 17‐deoxyprovidencin is described. Key steps include an aldol addition, a base‐catalyzed Wipf‐type furan formation, a Z‐selective ring‐closing metathesis for macrocyclization, a photochemical E/Z isomerization to a highly strained and conformationally restricted ring system, and the stereoselective formation of two epoxides on the ring.  相似文献   

13.
A C C bond‐forming conjugate reaction was successfully applied to the enantioselective dearomatization of β‐naphthols. A C(sp2) C(sp3) bond is formed by using propargylic ketones as reactive partners. Good to excellent Z/E ratios and ee values were obtained by employing an in situ generated magnesium catalyst. Further transformations of the Z‐configured C C double bond in the products were achieved under mild reaction conditions. Moreover, the stereocontrolling element of this magnesium‐catalyzed dearomatization reaction was explored by computational chemistry.  相似文献   

14.
A C? C bond‐forming conjugate reaction was successfully applied to the enantioselective dearomatization of β‐naphthols. A C(sp2)? C(sp3) bond is formed by using propargylic ketones as reactive partners. Good to excellent Z/E ratios and ee values were obtained by employing an in situ generated magnesium catalyst. Further transformations of the Z‐configured C? C double bond in the products were achieved under mild reaction conditions. Moreover, the stereocontrolling element of this magnesium‐catalyzed dearomatization reaction was explored by computational chemistry.  相似文献   

15.
We report the preparation of lithium‐salt‐free KDA (potassium diisopropylamide; 0.6 m in hexane) complexed with TMEDA (N,N,N′,N′‐tetramethylethylenediamine) and its use for the flow‐metalation of (hetero)arenes between ?78 °C and 25 °C with reaction times between 0.2 s and 24 s and a combined flow rate of 10 mL min?1 using a commercial flow setup. The resulting potassium organometallics react instantaneously with various electrophiles, such as ketones, aldehydes, alkyl and allylic halides, disulfides, Weinreb amides, and Me3SiCl, affording functionalized (hetero)arenes in high yields. This flow procedure is successfully extended to the lateral metalation of methyl‐substituted arenes and heteroaromatics, resulting in the formation of various benzylic potassium organometallics. A metalation scale‐up was possible without further optimization.  相似文献   

16.
The title compound, C16H14FNOS, crystallizes with Z′ = 2 in the space group P21/c. In one of the two independent molecules, the heterocyclic ring is effectively planar, but in the other molecule this ring adopts an envelope conformation. The molecules are weakly linked by two C—H...O hydrogen bonds to form C22(14) chains. Comparisons are made with some symmetrically substituted 2‐aryl‐3‐benzyl‐1,3‐thiazolidin‐4‐ones.  相似文献   

17.
A highly enantioselective tandem Michael/ring‐closure reaction of α,β‐unsaturated pyrazoleamides and amidomalonates has been accomplished in the presence of a chiral N,N′‐dioxide–Yb(OTf)3 complex (Tf: trifluoromethanesulfonyl) to give various substituted chiral glutarimides with high yields and diastereo‐ and enantioselectivities. Moreover, this methodology could be used for gram‐scale manipulation and was successfully applied to the synthesis of (?)‐paroxetine. Further nonlinear and HRMS studies revealed that the real catalytically active species was a monomeric L ‐PMe2 –Yb3+ complex. A plausible transition state was proposed to explain the origin of the asymmetric induction.  相似文献   

18.
New N‐Alkyl‐substituted imidazolium salts as well as a series of their corresponding [Pd(NHC)(MA)2] complexes have been obtained by three routes in good yield. The previously reported synthesis for the analogous N‐aryl substituted [Pd(NHC)(MA)2] complexes has been improved. The N‐alkyl‐substituted [Pd(NHC)(MA)2] complexes are thermally more labile than their N‐aryl counterparts. Catalytic transfer semi‐hydrogenation of phenylpropyne resulted in good to excellent chemo‐ and stereo‐ selectivity conversion into (Z)‐phenylpropene. The size of the alkyl substituents correlates with the rate of hydrogenation in the sense that more bulky substituents give rise to faster transfer hydrogenation rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Methyl 2‐benzamido‐4‐(3,4‐dimethoxyphenyl)‐5‐methylbenzoate, C24H23NO5, (Ia), and N‐{5‐benzoyl‐2‐[(Z)‐2‐methoxyethenyl]‐4‐methylphenyl}benzamide, C24H21NO3, (IIa), were formed via a Diels–Alder reaction of appropriately substituted 2H‐pyran‐2‐ones and methyl propiolate or (Z)‐1‐methoxybut‐1‐en‐3‐yne, respectively. Each of these cycloadditions might yield two different regioisomers, but just one was obtained in each case. In (Ia), an intramolecular N—H...O hydrogen bond closes a six‐membered ring. A chain is formed due to aromatic π–π interactions, and a three‐dimensional framework structure is formed by a combination of C—H...O and C—H...π(arene) hydrogen bonds. Compound (IIa) was formed not only regioselectively but also chemoselectively, with just the triple bond reacting and the double bond remaining unchanged. Compound (IIa) crystallizes as N—H...O hydrogen‐bonded dimers stabilized by aromatic π–π interactions. Dimers of (IIa) are connected into a chain by weak C—H...π(arene) interactions.  相似文献   

20.
The intramolecular [2+2] photocycloaddition of four 4‐(but‐3‐enyl)oxyquinolones (substitution pattern at the terminal alkene carbon atom: CH2, Z‐CHEt, E‐CHEt, CMe2) and two 3‐(but‐3‐enyl)oxyquinolones (substitution pattern: CH2, CMe2) was studied. Upon direct irradiation at λ=300 nm, the respective cyclobutane products were formed in high yields (83–95 %) and for symmetrically substituted substrates with complete diastereoselectivity. Substrates with a Z‐ or E‐substituted terminal double bond showed a stereoconvergent reaction course leading to mixtures of regio‐ and diastereomers with almost identical composition. The mechanistic course of the photocycloaddition was elucidated by transient absorption spectroscopy. A triplet intermediate was detected for the title compounds, which–in contrast to simple alkoxyquinolones such as 3‐butyloxyquinolone and 4‐methoxyquinolone–decayed rapidly (τ≈1 ns) through cyclization to a triplet 1,4‐diradical. The diradical can evolve through two reaction channels, one leading to the photoproduct and the other leading back to the starting material. When the photocycloaddition was performed in the presence of a chiral sensitizer (10 mol %) upon irradiation at λ=366 nm in trifluorotoluene as the solvent, moderate to high enantioselectivities were achieved. The two 3‐(but‐3‐enyl)oxyquinolones gave enantiomeric excesses (ees) of 60 and 64 % at ?25 °C, presumably because a significant racemic background reaction occurred. The 4‐substituted quinolones showed higher enantioselectivities (92–96 % ee at ?25 °C) and, for the terminally Z‐ and E‐substituted substrates, an improved regio‐ and diastereoselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号