首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以醋酸铅为铅源,硫代乙酰胺为硫源,在表面活性剂十二烷基硫酸钠(SDS)和十六烷基三甲基溴化铵(CTAB)共同作用下,通过简单地调节水热反应的反应温度控制合成出球状、立方状和空心立方状PbS纳米晶。利用XRD、TEM对合成产物的结构和形貌进行了表征,发现合成的球状、立方状和空心立方状PbS纳米晶尺寸均一,直径为100 nm左右。对球状、立方状和空心立方状PbS纳米晶的形成机理进行了初探,结果表明反应温度较低时,水热反应初始阶段形成的PbS小颗粒呈球形,在表面活性剂SDS的烷基链模板和CTAB微胶束软模板共同作用下生成球状PbS纳米晶;反应温度较高时,水热反应初始阶段形成的PbS小颗粒由于自身的立方相岩盐晶体结构的影响有呈立方状趋势,在SDS和CTAB共同作用下产物堆积成空心立方体状或立方状。  相似文献   

2.
In this paper we report an electron microscopic observation of crystal shape development when PbSe nanocrystals were synthesized using a dynamic injection technique at different temperatures in the presence of oleic acid. A two-step evolution mechanism was proposed, indicating that the shape evolution of PbSe nanocrystals is dependent on the growth time, whereas the crystalline size can be tuned by varying the growth temperature under the studied conditions. It also implies that a higher growth rate in the 111 direction compared to that in the 100 direction results in the formation of nanocubes.  相似文献   

3.
Hexagonal starfish-like PbS crystals have been synthesized by the reaction of lead acetate and thioacetamide (TAA) controlled by mixture of cetyltrimethylammonium bromide/sodium dodecyl sulfate (STAB/SDS) at the molar ratio of 5: 1 through a hydrothermal process at 80°C. It has been found that the hexagonal starfish-like PbS single crystal is in cubic phase, and the six arms of the star extend along the six 〈100〉 directions. By changing reaction conditions, such as the molar ratio of CTAB/SDS, temperature, and reaction time, the amounts of TAA and lead sources, the morphology and structure of the PbS crystals can be controlled. Furthermore, possible formation mechanism was preliminarily illustrated. The room-temperature photoluminescence spectra in solid state of the PbS single crystals obtained after different reaction times were investigated, which demonstrated that the PbS single crystals presented excellent optical properties. This work may open a novel route to the shaped-controllable synthesis of semiconductor crystals with various morphologies.  相似文献   

4.
Single-crystalline and uniform nanopolyhedra, nanorods, and nanocubes of cubic CeO2 were selectively prepared by a hydrothermal method at temperatures in the range of 100-180 degrees C under different NaOH concentrations, using Ce(NO3)3 as the cerium source. According to high-resolution transmission electron microscopy, they have different exposed crystal planes: {111} and {100} for polyhedra, {110} and {100} for rods, and {100} for cubes. During the synthesis, the formation of hexagonal Ce(OH)3 intermediate species and their transformation into CeO2 at elevated temperature, together with the base concentration, have been demonstrated as the key factors responsible for the shape evolution. Oxygen storage capacity (OSC) measurements at 400 degrees C revealed that the oxygen storage takes place both at the surface and in the bulk for the as-obtained CeO2 nanorods and nanocubes, but is restricted at the surface for the nanopolyhedra just like the bulk one, because the {100}/{110}-dominated surface structures are more reactive for CO oxidation than the {111}-dominated one. This result suggests that high OSC materials might be designed and obtained by shape-selective synthetic strategy.  相似文献   

5.
In this study, we have developed for the first time a fast and energy‐efficient method for the synthesis of PbS nanocrystals with systematic shape evolution from cubic to truncated cubic, cuboctahedral, truncated octahedral, and octahedral structures. The method involves the addition of a small volume of preheated lead acetate and thioacetamide (TAA) mixture to an aqueous growth solution of lead acetate, thioacetamide, cetyltrimethylammonium bromide, and nitric acid. By varying the amount of thioacetamide added to the growth solution, PbS nanocrystals with different morphologies were generated in 2 h at 90 °C. Slight experimental modifications were adopted to generate truncated octahedra. The nanocrystals have very uniform dimensions with average sizes of 32–47 nm. Their structures have been extensively examined by electron microscopy. Nanocube sizes can also be tuned within a range. UV/Vis absorption spectra of PbS cubes, cuboctahedra, and octahedra all show decreasing but continuous absorption from 300 nm to beyond 1000 nm. By monitoring the speed of darkening of solution color, particle growth rate was found to be fastest for nanocubes, followed by truncated cubes, cuboctahedra, and octahedra. These monodisperse nanocrystals can readily form self‐assembled structures. Truncated cubes and octahedra that form monolayer and multilayer packing arrangements have also been studied. This green approach to the synthesis of PbS nanocrystals with fine size and shape control should allow for investigations of their facet‐dependent properties and the fabrication of novel heterostructures.  相似文献   

6.
We report on the synthesis of semiconductor nanocrystals of PbS, ZnS, CdS, and MnS through a facile and inexpensive synthetic process. Metal-oleylamine complexes, which were obtained from the reaction of metal chloride and oleylamine, were mixed with sulfur. The reaction mixture was heated under appropriate experimental conditions to produce metal sulfide nanocrystals. Uniform cube-shaped PbS nanocrystals with particle sizes of 6, 8, 9, and 13 nm were synthesized. The particle size was controlled by changing the relative amount of PbCl(2) and sulfur. Uniform 11 nm sized spherical ZnS nanocrystals were synthesized from the reaction of zinc chloride and sulfur, followed by one cycle of size-selective precipitation. CdS nanocrystals that consist of rods, bipods, and tripods were synthesized from a reaction mixture containing a 1:6 molar ratio of cadmium to sulfur. Spherical CdS nanocrystals (5.1 nm sized) were obtained from a reaction mixture with a cadmium to sulfur molar ratio of 2:1. MnS nanocrystals with various sizes and shapes were synthesized from the reaction of MnCl(2) and sulfur in oleylamine. Rod-shaped MnS nanocrystals with an average size of 20 nm (thickness) x 37 nm (length) were synthesized from a 1:1 molar ratio of MnCl(2) and sulfur at 240 degrees C. Novel bullet-shaped MnS nanocrystals with an average size of 17 nm (thickness) x 44 nm (length) were synthesized from the reaction of 4 mmol of MnCl(2) and 2 mmol of sulfur at 280 degrees C for 2 h. Shorter bullet-shaped MnS nanocrystals were synthesized from a 3:1 molar ratio of MnCl(2) and sulfur. Hexagon-shaped MnS nanocrystals were also obtained. All of the synthesized nanocrystals were highly crystalline.  相似文献   

7.
Uniform inorganic- (PbS) coated polymer core-shell and hollow PbS microspheres were prepared by an easy and economical approach. Monodisperse polystyrene (PS) microspheres were used as templates, as well as the core of the composite spheres; lead sulfide shells were obtained through the reaction of lead acetate (Pb(CH3COO)2) and thioacetamide (TAA) at room temperature. The morphologies and structures of the as-synthesized products were systematically characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectra (FTIR). The fluorescence property of the as-synthesized product was also investigated. A reasonable mechanism for the formation of PS–PbS core-shell and hollow PbS microspheres was discussed. According to a series of parallel experiments, effects of related experimental parameters were also carefully investigated, such as the molar ratio of Pb(CH3COO)2 to TAA, reaction temperature, etc.  相似文献   

8.
Monodisperse FePt nanocubes are synthesized at 205 degrees C by controlling decomposition of Fe(CO)5 and reduction of Pt(acac)2 and addition sequence of oleic acid and oleylamine. Different from the assembly of the sphere-like FePt nanoparticles, which shows 3D random structure orientation, self-assembly of the FePt nanocubes leads to a superlattice array with each FePt cube exhibiting (100) texture. Thermal annealing converts the chemically disordered fcc FePt to chemically ordered fct FePt, and the annealed assembly shows a strong (001) texture in the directions both parallel and perpendicular to the substrate. This shape-controlled synthesis and self-assembly offers a promising approach to fabrication of magnetically aligned FePt nanocrystal arrays for high density information storage and high performance permanent magnet applications.  相似文献   

9.
液相合成方形PbS纳米晶的光学特性   总被引:2,自引:6,他引:2  
采用一种简单、温和的液相合成方法制备了PbS纳米晶,利用透射电镜和高分辨透射电镜对PbS纳米晶的形貌与晶型结构进行了表征.研究了PbS纳米晶的光学吸收和光致发光特性,并比较分析了包覆剂聚乙烯吡咯烷酮(PVP)和回流时间对产物光学特性的影响.结果表明:PVP分子链中的O原子与纳米晶表面吸附的游离态Pb原子形成Pb-O配位键,使产物的激子吸收大为减弱,同时引起了表面浅束缚态能量的升高,最终导致了荧光淬灭现象.  相似文献   

10.
We present a surfactant-assisted solvothermal approach for the controllable synthesis of a PbS nanocrystal at low temperature (85 degrees C). Nanotubes (400 nm in length with an outer diameter of 30 nm), bundle-like long nanorods (about 5-15 mum long and an average diameter of 100 nm), nanowires (5-20 mum in length and with a diameter of 20-50 nm), short nanorods (100-300 nm in length and an axial ratio of 5-10), nanoparticles (25 nm in width with an aspect ratio of 2), and nanocubes (a short axis length of 10 nm and a long axis length of 15 nm) were successfully prepared and characterized by transmission electron microscopy, scanning electron microscopy, and powder X-ray diffraction pattern. A series of experimental results indicated that several experimental factors, such as AOT concentration, ratio of [water]/[surfactant], reaction time, and ratio of the reagents, play key roles in the final morphologies of PbS. Possible formation mechanisms of PbS nanorods and nanotubes were proposed.  相似文献   

11.
Hydrolysis of In(O-iPr)3 by 10 molar excess of water at 90 degrees C in a surfactant/solvent mixture of oleylamine/oleic acid/trioctylamine provides very small nanoparticles (<5 nm in diameter) of In(O)(OH). Subsequent in situ thermolysis of the formed In(O)(OH) nanoparticles at 350 degrees C and ambient pressure produces monodisperse h-In2O3 nanocubes, which can form an extended two-dimensional array on a flat surface. The size of the In2O3 nanocubes (8, 10, and 12 nm) could be easily controlled by the simple change in the amounts of employed surfactants. The h-In2O3 nanocube samples show blue PL emissions at room temperature due to, presumably, systematic oxygen vacancy.  相似文献   

12.
Nearly monodisperse single-crystalline In(OH)(3) nanocubes were successfully synthesized using In(NO(3))(3) x 4.5 H(2)O as indium source in the presence of urea and cetyltrimethyl ammonium bromide (CTAB) by a two-step hydrothermal process: the stock solution was heated at 70 degrees C for 24 h and then at 120 degrees C for 12 h. The structure and morphology of the resultant In(OH)(3) samples were determined by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results revealed that most of as-synthesized In(OH)(3) nanocubes were uniform in size, with the average edge length of approximately 700 nm. The influences of the reaction temperature, the reaction time, the mineralizer, and the surfactant on the morphology of the obtained products were discussed in detail. Room-temperature photoluminescence (PL) spectrum of the In(OH)(3) nanocubes showed a peculiar strong emission peak centered at 480 nm. Furthermore, the photocatalytic properties of the In(OH)(3) nanocubes were tested. It was found that In(OH)(3) exhibited not only higher activity for benzene removal, but also better H(2) evolution from water than the commercial Degussa P25 TiO(2).  相似文献   

13.
This Communication describes the synthesis of highly monodispersed 12 nm nickel nanocubes. The cubic shape was achieved by using trioctylphosphine and hexadecylamine surfactants under a reducing hydrogen atmosphere to favor thermodynamic growth and the stabilization of {100} facets. Varying the metal precursor to trioctylphosphine ratio was found to alter the nanoparticle size and shape from 5 nm spherical nanoparticles to 12 nm nanocubes. High-resolution transmission electron microscopy showed that the nanocubes are protected from further oxidation by a 1 nm NiO shell. Synchrotron-based X-ray diffraction techniques showed the nickel nanocubes order into [100] aligned arrays. Magnetic studies showed the nickel nanocubes have over 4 times enhancement in magnetic saturation compared to spherical superparamagnetic nickel nanoparticles.  相似文献   

14.
The pure face-centered cubic lead chalcogenide nanocubes have been synthesized in hydrazine hydrate saturated alkaline solution under the conditions of room temperature, ambient pressure, and a short growth time, with advantages of being simple, high yield and cost effective. The size of PbS, PbSe and PbTe nanocubes is 200–300 nm, 50–120 nm, and 30–60 nm, respectively. It was found that the growth steps of lead chalcogenides (especially PbTe) nanostructures could be controlled in the strong hydrazine hydrate alkaline environment. Thermoelectric properties of the films made from the PbS, PbSe and PbTe nanocubes have been investigated comparatively for the first time. The results indicate that the room-temperature Seebeck coefficient value of the PbS, PbSe and PbTe nanocube films is up to 154.4 μV/K, 199.8 μV/K and 451.1 μV/K, respectively.  相似文献   

15.
In this study, a new series of Cu(2)O nanocrystals with systematic shape evolution from cubic to face-raised cubic, edge- and corner-truncated octahedral, all-corner-truncated rhombic dodecahedral, {100}-truncated rhombic dodecahedral, and rhombic dodecahedral structures have been synthesized. The average sizes for the cubes, edge- and corner-truncated octahedra, {100}-truncated rhombic dodecahedra, and rhombic dodecahedra are approximately 200, 140, 270, and 290 nm, respectively. An aqueous mixture of CuCl(2), sodium dodecyl sulfate, NaOH, and NH(2)OH·HCl was prepared to produce these nanocrystals at room temperature. Simple adjustment of the amounts of NH(2)OH·HCl introduced enables this particle shape evolution. These novel particle morphologies have been carefully analyzed by transmission electron microscopy (TEM). The solution color changes quickly from blue to green, yellow, and then orange within 1 min of reaction in the formation of nanocubes, while such color change takes 10-20 min in the growth of rhombic dodecahedra. TEM examination confirmed the rapid production of nanocubes and a substantially slower growth rate for the rhombic dodecahedra. The rhombic dodecahedra exposing only the {110} facets exhibit an exceptionally good photocatalytic activity toward the fast and complete photodegradation of methyl orange due to a high number density of surface copper atoms, demonstrating the importance of their successful preparation. They may serve as effective and cheap catalysts for other photocatalytic reactions and organic coupling reactions.  相似文献   

16.
A series of Pb doped CeO2 nanocubes with seven different Pb loadings (2–12 mol%) were synthesized via modified hydrothermal technique. The prepared samples were characterized by XRD, XPS, FT-IR, TGA, SEM, HR-TEM, EDS and UV–Vis DRS analysis. According to XRD analysis, the crystalline structure of synthesized pure CeO2 and Pb-doped CeO2 samples are cubic structure. The ceria nanocubes showed an increase in amount of oxygen vacancies with increasing the dopant concentrations. When the doping level of Pb is 6 mol%, the optical band gap of Pb-CeO2 is smaller than that of pure CeO2 nanocubes. The HR-TEM results confirms the cubic structure of 6% Pb-CeO2 with average crystallite size of about 15 nm. The photocatalytic ability of Pb-CeO2 catalysts were studied by degrading several anionic and cationic organic pollutants like methylene blue (MB), methylene orange (MO), methylene red (MR), rhodamine B (RhB), reactive blue 160 (RB160), salicylic acid (SA), coumarin and phenol. The 6% Pb-CeO2 nanocubes shows better photocatalytic performance against anionic dyes especially for MB. To find the optimum condition for better photocatalytic performance of 6% Pb-CeO2 nanocubes, the photocatalytic process was conducted in different initial reaction conditions like reaction temperature, catalytic dosage, dye concentration and pH of the reaction solution. The stability and recyclability of 6% Pb-CeO2 photocatalyst was studied by XRD, FT-IR and EDS analysis after 5 cycles of MB degradation. The hydroxyl radical estimation and trapping experiments were conducted to observe the photocatalytic mechanism process in 6% Pb-CeO2 nanocubes. The perfect doping concentration for better organic pollutant degradation by Pb-CeO2 is found to be 6 mol% of Pb.  相似文献   

17.
Tang Y  Jiang Y  Jia Z  Li B  Luo L  Xu L 《Inorganic chemistry》2006,45(26):10774-10779
Uniform crystalline CdSnO3.3H2O nanocubes with a 28-35 nm edge length have been obtained via the ion-exchange reaction of Na2Sn(OH)6 in a CdSO4 aqueous solution, assisted by ultrasonic treatment. Precursor Na2Sn(OH)6 crystals were prepared via hydrothermal treatment in an ethanol/water solution. The formation of CdSnO3.3H2O nanocubes resulted from the strain during the ion-exchange process. The influences of reaction conditions, such as ion-exchange (ultrasonic treatment) duration, solvent constitutes, surfactant, and pH on the formation of CdSnO3.3H2O crystals were described. Crystalline CdSnO3 and Cd2SnO4 have been obtained by thermal treatment at 300 and 500 degrees C, respectively, for 5 h under an inert-gas protecting condition using CdSnO3.3H2O nanocubes as the precursor. The cube shape of CdSnO3.3H2O was sustained after thermal decomposition to CdSnO3.  相似文献   

18.
Controlled synthesis of monodisperse silver nanocubes in water   总被引:5,自引:0,他引:5  
Monodisperse silver nanocubes with edge length of 55 +/- 5 nm were, for the first time, synthesized in water on the basis of HTAB-modified silver mirror reaction at 120 degrees C (HTAB, n-hexadecyltrimethylammonium bromide). The individual nanocube was crystallographically well defined with a single crystal bonded by six {200} facets. The nanocubes were soluble to form stable aqueous solutions and had a strong tendency to assemble into two-dimensional arrays with regular checked pattern on substrate.  相似文献   

19.
Monodisperse cube-shaped lead sulfide (PbS) nanocrystals were successfully synthesized by virtue of a solvothermal single-source precursor method at mild reaction conditions. These resulted PbS nanocrystals have the average size in a range of 10 nm and a uniform cubic shape, shown by TEM and HRTEM, respectively. Due to their narrow size distribution, orderly self-organized arrays on a large scale can be easily obtained. Experimental results indicate that several factors, such as coordinating ability of the solvent, carbon number of the substitute alkyls (n), reaction temperature, and concentration of the precursor, play key roles in the final size and size distribution of PbS nanocrystals. This finding will enhance our understanding for the formation mechanism of nanostructured materials with special shapes.  相似文献   

20.
The synthesis of Pd nanocrystals of controlled size and morphology has drawn enormous interest due to their catalytic activity. We report a new and efficient strategy for the one-step synthesis of monodispersed Pd nanocubes with ethylenediamine tetramethylene phosphonate (EDTMP) as a complex-forming and capping agent. The morphology, structure, and growth mechanism of the Pd nanocubes were fully characterized via selected area electron diffraction (SAED), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). It was found that the morphology of the Pd nanocrystals in the proposed EDTMP–PdCl2 system could be changed from octahedrons to nanocubes simply by adjusting the amount of iodide used during synthesis. After UV/ozone and electrochemical cleaning, the as-prepared Pd nanocubes demonstrated excellent electrocatalytic activity and stability during formic acid oxidation, owing to their abundant {100} facets and small particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号