首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of 3,6-di-tert-butyl-1,2-benzoquinone with PhC≡CLi and ButC≡CLi are multistage processes. In the first stage, nucleophilic 1,2-addition of the organometallic compound too-benzoquinone occurs to form the corresponding hydroxycyclohexadienone derivative. In polar solvents, the latter undergoes rearrangement through insertion of the oxygen atom into the ring to form a new allenic organolithium compound. The reaction of the newly formed organometallic compound with the initialo-quinone occurs either as a one-electron transfer to yield lithium semiquinolate and a dimerization product,viz., 4,4′-bi(2,5-di-tert-butyl-9,9-dimethyldeca-2,5-dien-7-yn-1,6-olide), or as the 1,4-addition to yield 2,5-di-tert-butyl-8-(3,6-di-tert-butyl-1,2-benzoquinon-4-yl)-8-phenylocta-2,4,6,7-tetraen-1,6-olide. The structure of the latter compound was established by X-ray diffraction analysis and by NMR and IR spectroscopy. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 2, pp. 351–356, February, 1999.  相似文献   

2.
Base-catalyzed interaction of 3,6-di-tert-butyl-1,2-benzoquinone with malononitrile mainly occurs as 1,4-addition to give 3,6-di-tert-butyl-4-dicyanomethylpyrocatechol. Its oxidation leads to 3,6-di-tert-butyl-4-dicyanomethyl-1,2-benzoquinone, which converts into 3,6-di-tert-butyl-2-hydroxy-α,α-dicyano-1,4-quinomethane in solution and in the solid state. The latter rearranges into isomeric 3,6-di-tert-butyl-5-dicyanomethylenecyclohex-3-ene-1,2-dione. Reverse conversion occurs under the action of amines. Semiquinone complexes of dicyanomethylquinone were studied in solutions by ESR.  相似文献   

3.
Alkoxylation of 3,6-di-tert-butyl-1,2-benzoquinone with a number of diols, including propane-1,3-diol, butane-1,4-diol, di-, and triethylene glycols, and cyclohexane-1,4-diyldimethanol, was studied. Nine new 4-alkoxy-3,6-di-tert-butyl-1,2-benzoquinones were synthesized, four of which were bis-1,2-benzoquinones with different tethers (6–13 atoms) between the quinone fragments. Depending on the length of the chain between the hydroxy groups in glycols, bicyclic 4,5-disubstituted 3,6-di-tert-butyl-1,2-benzoquinones were formed or their stepwise alkoxylation occurred. The newly synthesized o-benzoquinone derivatives can be reduced with alkali metals to give radical anions and converted into semiquinone chelates with manganese carbonyl.  相似文献   

4.
The pulse action of elastic waves on polycrystalline mixtures of 3,6-di-tert-butylcatechol and 3,6-di-tert-butyl-o-benzoquinone produces radical pairs stable at room temperature, and the addition of polycrystalline sulfur considerably increases their yield. The dependences of formation and decay rates of paramagnetic centers on the composition of the mixture were studied. The threshold character of formation of paramagnetic centers at various powers of elastic wave pulse was established.Translated fromIzvestiya Akademii Nauk. Seriva Khimicheskaya, No. 4, pp. 864–868, April, 1996.  相似文献   

5.
The reaction of ozone with 3,6-di-tert-butylpyrocatechol at 20°C was investigated, and it was found that the main reaction product was 3,6-di-tert-butylquinone, while the reaction rate was proportional to the concentrations of the reagents. A reaction scheme explaining the mechanism of formation of the main and side products is proposed.N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 6, pp. 1443–1447, June, 1992.  相似文献   

6.
Oxidation of 4,6-di-tert-butylpyrogallol gave two dimeric products instead of the expected 4,6-di-tert-butyl-3-hydroxy-1,2-benzoquinone (2). It was established by X-ray diffraction analysis that the first product has the structure of tetra-tert-butyl-6, 10a-dihydroxy-1,2-dioxo-3,4a,7,9-1,2,4a, 10a-tetrahydrodibenzo-1,4-dioxine. From this it follows that compound 2 undergoes regio- and stereospecific dimerization according to the [2π+4π]-cycloaddition mechanism,viz, the hetero Diels—Alder reaction. The double intensities of the signals in the1H NMR spectrum are indicative of a symmetrical structure of the second product, 2,6,4′, 6′-tetra-tert-butyl-4,4′-dihyroxy-3,5,3′,5′-tetraoxo-4,4′-bi(cyclohexene), which is a racemate of enantiomers formed upon recombination (r+r orl+l) of the intermediate of oxidation of pyrogallol, namely, of ther,l-stereogenic 3,5-di-tert-butyl-1-hydroxy-2,6-dioxocyclohex-3-enyl radical. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 139–146, January, 1999.  相似文献   

7.
2-(Triphenylstannyloxy)-3,6-di-tert-butyl-1,4-benzoquinone (1) was obtained from the potassium salt of 3,6-di-tert-butyl-2-hydroxy-1,4-benzoquinone and triphenyltin bromide in methanol and characterized by x-ray diffraction analysis, electronic, IR, and NMR spectroscopy. According to x-ray diffraction data, the single crystal of1 has the structure of a chain metal polymer with bridging hydroxy-para-quinone ligands; the coordination number of tin is six. Complex1 is reduced by cobaltocene to the corresponding radical anion. In solutions,1 reacts with metal-centered radicals , and with formation of paramagnetic binuclearortho-semiquinone complexes.Institute of Organometallic Chemistry, Russian Academy of Sciences, 603600 Nizhnii Novgorod. A. N. Nesmeyanov Institute of Heteroorganic Compounds, Russian Academy of Sciences, 117813 Moscow. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 12, pp. 2798–2804, December, 1992.  相似文献   

8.
The interaction of 3,6-di-tert-butyl-2-hydroxyphenoxyl with triethylamine in the reaction of proton transfer is catalyzed by water. However, the rate of proton exchange with diethylamine is independent of water admixtures in the reaction medium. ESR showed that the complexing of 3,6-di-tert-butyl-2-hydroxyphenoxyl with water leads to redistribution of the spin density.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1018–1021, June, 1994.  相似文献   

9.
Chlorination of 3,6-di-tert-butyl-1,2-benzoquinone in a two-phase catalytic system (CH2Cl2, HCl- H2O, H2O2, Bu4NCl) led to halogen addition at the C=C bond, and subsequent dehydrochlorination of the adduct gave 3,6-di-tert-butyl-4-chloro-1,2-benzoquinone. Chlorination of the latter afforded 3,6-di-tert-butyl-4,5-dichloro-1,2-benzoquinone.  相似文献   

10.
The interaction of 3,6-di-tert-butyl-ortho-benzoquinone (1) and 3,5-di-tert-butyl-ortho-benzoquinone (2) with NH3 in water—alcohol medium and with (NH4)2CO3 in a solid phase has been studied. Redox processes with participation of a nucleophile of the medium take place for1, while2 reacts with NH3 at the carbonyl group with transformation of the quinone imide. The mechanism of redox transformation of1 has been proposed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1789–1793, September, 1995.This work was carried out with financial support from the Russian Foundation for Basic Research (Project No. 94-03-08653).  相似文献   

11.
Oxidation of amalgamated magnesium metal with 3,6-di-tert-butyl-o-benzoquinone (1) in different aprotic organic solvents afforded magnesium catecholate and bis-o-semiquinolate complexes. The catecholate derivatives of magnesium CatMgL2 (Cat is the 3,6-di-tert-butyl-o-benzoquinone dianion, L = THF or Py) were synthesized in high yields in pyridine and tetrahydrofuran, respectively. The reactions in diethyl ether or dimethoxyethane produced hexacoordinated metal bis-o-semiquinolates SQ2MgLn (SQ is the 3,6-di-tert-butyl-o-benzoquinone radical anion, L = Et2O, n = 2; L = DME, n = 1). The reaction with the use of toluene as the solvent gave a magnesium bis-o-semiquinolate complex containing the coordinated unreduced o-quinone molecule. The molecular structures of the [CatMgPy2]2 and SQ2Mg·DME complexes were established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 92–98, January, 2007.  相似文献   

12.
Systems consisting of metal (Al, Ti, Zr) tert-butylate and tert-butyl hydroperoxide oxidize 3,6-di-tert-butyl-o-benzoquinone under mild conditions (room temperature, benzene). With (t-BuO)3Al and (t-BuO)4Zr, the major reaction products are 5-hydroxy-3,6-di-tert-butyl-2,3-epoxy-p-benzoquinone, and with (t-BuO)4Ti, 2-hydroxy-3,6-di-tert-butyl-p-benzoquinone. Under the conditions of this reaction, 3,6-di-tert-butylpyrocatechol initially transforms into 3,6-di-tert-butyl-o-benzoquinone. The reactions involve metalcontaining peroxides.  相似文献   

13.
New mononuclear 3,6-di-tert-butyl-o-benzosemiquinone complexes of copper(1) with bis(diphenylphosphine) ligands were synthesized: (DBSQ)Cu(dppe) (1) (DBSQ=3,6-di-tert-butyl-o-benzosemiquinone and dppe=1,2-bis(diphenylphosphino)ethane), (DBSQ)Cu(dppp) (2) (dppp=1,3-bis(diphenylphosphino)propane), (DBSQ)Cu(dppn) (3) (dppn=2,2′-bis(diphenylphosphino)-1,1′-binaphthyl), and (DBSQ)Cu(dppfc) (4) (dppfc=1,1′-bis(diphenylphosphino)ferrocene). The compositions and structures of complexes1–4 were characterized by elemental analysis and electronic absorption, IR, and ESR spectroscopy. The molecular structures of complexes3 and4 were established by X-ray diffraction analysis. The reactions of elimination and replacement of neutral ligands in the coordination sphere of the complexes were studied by ESR spectroscopy. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2333–2340, November, 1998.  相似文献   

14.
Products of thermolysis of 2,6-di-tert-butyl-4-dimethylaminomethylphenol were determined qualitatively and quantitatively by GLC, UV, and1H NMR methods. The kinetics of the reaction was studied. The thermolysis products were studied as the inhibitors in thermopolymerization of monomers. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1881–1883, October, 1997.  相似文献   

15.
Bis(1,4-di-tert-butyl-1,4-diazabutadiene)copper(i) [(3,6-di-tert-butyl-o-benzosemiquinono)(3,6-di-tert-butylcatecholato)cuprate(ii)] (1) was synthesized. Complex 1 contains the 1,4-di-tert-butyl-1,4-diazabutadiene and 3,6-di-tert-butyl-o-benzoquinone ligands in the reduced form. The structure of 1 was established by X-ray diffraction analysis. The ESR spectra indicate that dissolution of complex 1 in organic solvents (toluene, THF, CH2Cl2, etc.) leads to its symmetrization to give neutral complex 2, which occurs in solutions as an equilibrium mixture of two redox isomers, viz., catecholate (Cat) complex 2c and semiquinone (SQ) complex 2s. In the coordination sphere of the copper atom, the reversible intramolecular metal—ligand electron transfer can proceed as successive steps as exemplified by the reactions of 2 with CO and 2,6-dimethylphenylisonitrile. Copper(i) o-semiquinone complex 2s can be reversibly transformed into copper(ii) catecholate complex 2c through electron transfer from the copper(i) atom to the SQ ligand. The subsequent addition of the neutral ligand (CO or CNAr) to 2c induces, in turn, electron transfer from the Cat ligand to the copper(ii) atom accompanied by the transformation of the catecholate complex into the o-semiquinone complex. In the case of CO, this transformation is also reversible and is efficiently controlled by the temperature.  相似文献   

16.
The reaction of 3,6-di-tert-butyl-o-benzoquinone with dimedone in the presence of a catalytic amount of Et3N occurs as repeated 1,4-nucleophilic addition-oxidation and isomerization of a tricyclic quinone into quinomethane. The intermediate products were isolated and characterized. Semiquinone complexes of quinones were studied by ESR in solution. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2206–2209, December, 1997.  相似文献   

17.
The mechanism of proton exchange between semiquinone neutral radicals 3,6-di-tert-butyl-2-hydroxyphenoxyl (1), 6-tert-butyl-3-chloro-2-hydroxy-4-triphenylmethylphenoxyl, and hydrochloric acid in toluene solutions has been studied. The rate of proton exchange with hydrochloric acid is less than that with acetic acid owing to the higher thermodynamic stability of the radical cation formed upon semiquinone radical protonation by hydrochloric acid. The formation of radical cations and their dimers has been proven by spectroscopy.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No 1, pp. 84–87, January, 1993.  相似文献   

18.
Using EPR the proton exchange between 3,6-di-tert-butyl-2-oxyphenoxyl, 4-triphenylmethyl-6-tert-butyl-3-chloro-2-hydroxyphenoxyl, and secondary amines was studied. The nature of the solvent had no effect on the kinetic parameters of the process which was attributed to the formation of strong complexes owing to ring type hydrogen bonds. The effect of prototropy on the mechanism of proton exchange was examined.A. I. Nesmeyanov Institute of Heteroorganic Compounds, Russian Academy of Sciences, 117813 Moscow. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 11, pp. 2505–2511, November, 1992.  相似文献   

19.
The electrochemical reduction of eight quinones, 9,10-anthraquinone (1), duroquinone (2), 2,6-di-tert-butyl-1,4-benzoquinone (3), 2,6-dimethoxy-1,4-benzoquinone (4), 9,10-phenanthrenequinone (5), tetrachloro-1,2-benzoquinone (6), tetrabromo-1,2-benzoquinone (7) and 3,5-di-tert-butyl-1,2-benzoquinone (8), have been studied in acetonitrile. In every case it was found that cyclic voltammograms differed in significant ways from those expected for simple stepwise reduction of the quinone to its radical anion and dianion. The various types of deviations for the eight quinones have been cataloged and some speculation is offered concerning their origins.  相似文献   

20.
The polymerization of methyl methacrylate initiated by dicyclohexyl peroxydicarbonate at 30 °C was studied in the presence of tri-n-butylboron and a series of quinones, namely, p-benzoquinone, chloranil, and 2,5-di-tert-butyl-p-benzoquinone, whose concentration changed from 0.25 to 2.00 mol.%. The initial polymerization rate and molecular weight of poly(methyl methacrylate) depend on the structure and concentration of quinone. The growth radicals react with p-benzoquinone and chloranil predominantly at the C=C bond, while they react at the C=O bond of 2,5-di-tert-butyl-p-benzoquinone. The terminal stable oxygen-centered radicals that formed react with alkylborane, terminating reaction chains and generating alkyl radicals into the bulk. The latter are involved in chain initiation.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2114–2119, October, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号