首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, the Nervier–Stokes equations for incompressible flows, modified by the artificial compressibility method, are investigated numerically. To calculate the convective fluxes, a new high‐accuracy characteristics‐based (HACB) scheme is presented in this paper. Comparing the HACB scheme with the original characteristic‐based method, it is found that the new proposed scheme is more accurate and has faster convergence rate than the older one. The second order averaging scheme is used for estimating the viscose fluxes, and spatially discretized equations are integrated in time by an explicit fourth‐order Runge–Kutta scheme. The lid driven cavity flow and flow in channel with a backward facing step have been used as benchmark problems. It is shown that the obtained results using HACB scheme are in good agreement with the standard solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A two‐step conservative level set method is proposed in this study to simulate the gas/water two‐phase flow. For the sake of accuracy, the spatial derivative terms in the equations of motion for an incompressible fluid flow are approximated by the coupled compact scheme. For accurately predicting the modified level set function, the dispersion‐relation‐preserving advection scheme is developed to preserve the theoretical dispersion relation for the first‐order derivative terms shown in the pure advection equation cast in conservative form. For the purpose of retaining its long‐time accurate Casimir functionals and Hamiltonian in the transport equation for the level set function, the time derivative term is discretized by the sixth‐order accurate symplectic Runge–Kutta scheme. To resolve contact discontinuity oscillations near interface, nonlinear compression flux term and artificial damping term are properly added to the second‐step equation of the modified level set method. For the verification of the proposed dispersion‐relation‐preserving scheme applied in non‐staggered grids for solving the incompressible flow equations, three benchmark problems have been chosen in this study. The conservative level set method with area‐preserving property proposed for capturing the interface in incompressible fluid flows is also verified by solving the dam‐break, Rayleigh–Taylor instability, bubble rising in water, and droplet falling in water problems. Good agreements with the referenced solutions are demonstrated in all the investigated problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This paper combines the pseudo‐compressibility procedure, the preconditioning technique for accelerating the time marching for stiff hyperbolic equations, and high‐order accurate central compact scheme to establish the code for efficiently and accurately solving incompressible flows numerically based on the finite difference discretization. The spatial scheme consists of the sixth‐order compact scheme and 10th‐order numerical filter operator for guaranteeing computational stability. The preconditioned pseudo‐compressible Navier–Stokes equations are marched temporally using the implicit lower–upper symmetric Gauss–Seidel time integration method, and the time accuracy is improved by the dual‐time step method for the unsteady problems. The efficiency and reliability of the present procedure are demonstrated by applications to Taylor decaying vortices phenomena, double periodic shear layer rolling‐up problem, laminar flow over a flat plate, low Reynolds number unsteady flow around a circular cylinder at Re = 200, high Reynolds number turbulence flow past the S809 airfoil, and the three‐dimensional flows through two 90°curved ducts of square and circular cross sections, respectively. It is found that the numerical results of the present algorithm are in good agreement with theoretical solutions or experimental data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The objective of this paper is to present a methodology of using a two‐step split‐operator approach for solving the shallow water flow equations in terms of an orthogonal curvilinear co‐ordinate system. This approach is in fact one kind of the so‐called fractional step method that has been popularly used for computations of dynamic flow. By following that the momentum equations are decomposed into two portions, the computation procedure involves two steps. The first step (dispersion step) is to compute the provisional velocity in the momentum equation without the pressure gradient. The second step (propagation step) is to correct the provisional velocity by considering a divergence‐free velocity field, including the effect of the pressure gradient. This newly proposed method, other than the conventional split‐operator methods, such as the projection method, considers the effects of pressure gradient and bed friction in the second step. The advantage of this treatment is that it increases flexibility, efficiency and applicability of numerical simulation for various hydraulic problems. Four cases, including back‐water flow, reverse flow, circular basin flow and unsteady flow, have been demonstrated to show the accuracy and practical application of the method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
A fractional step method for the solution of the steady state incompressible Navier–Stokes equations is proposed in this paper in conjunction with a meshless method, named discrete least‐squares meshless (DLSM). The proposed fractional step method is a first‐order accurate scheme, named semi‐incremental fractional step method, which is a general form of the previous first‐order fractional step methods, i.e. non‐incremental and incremental schemes. One of the most important advantages of the proposed scheme is its capability to use large time step sizes for the solution of incompressible Navier–Stokes equations. DLSM method uses moving least‐squares shape functions for function approximation and discrete least‐squares technique for discretization of the governing differential equations and their boundary conditions. As there is no need for a background mesh, the DLSM method can be called a truly meshless method and enjoys symmetric and positive‐definite properties. Several numerical examples are used to demonstrate the ability and the efficiency of the proposed scheme and the discrete least‐squares meshless method. The results are shown to compare favorably with those of the previously published works. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
An upstream flux‐splitting finite‐volume (UFF) scheme is proposed for the solutions of the 2D shallow water equations. In the framework of the finite‐volume method, the artificially upstream flux vector splitting method is employed to establish the numerical flux function for the local Riemann problem. Based on this algorithm, an UFF scheme without Jacobian matrix operation is developed. The proposed scheme satisfying entropy condition is extended to be second‐order‐accurate using the MUSCL approach. The proposed UFF scheme and its second‐order extension are verified through the simulations of four shallow water problems, including the 1D idealized dam breaking, the oblique hydraulic jump, the circular dam breaking, and the dam‐break experiment with 45° bend channel. Meanwhile, the numerical performance of the UFF scheme is compared with those of three well‐known upwind schemes, namely the Osher, Roe, and HLL schemes. It is demonstrated that the proposed scheme performs remarkably well for shallow water flows. The simulated results also show that the UFF scheme has superior overall numerical performances among the schemes tested. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A finite difference method is presented for solving the 3D Navier–Stokes equations in vorticity–velocity form. The method involves solving the vorticity transport equations in ‘curl‐form’ along with a set of Cauchy–Riemann type equations for the velocity. The equations are formulated in cylindrical co‐ordinates and discretized using a staggered grid arrangement. The discretized Cauchy–Riemann type equations are overdetermined and their solution is accomplished by employing a conjugate gradient method on the normal equations. The vorticity transport equations are solved in time using a semi‐implicit Crank–Nicolson/Adams–Bashforth scheme combined with a second‐order accurate spatial discretization scheme. Special emphasis is put on the treatment of the polar singularity. Numerical results of axisymmetric as well as non‐axisymmetric flows in a pipe and in a closed cylinder are presented. Comparison with measurements are carried out for the axisymmetric flow cases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Discontinuous Galerkin (DG) methods have shown promising results for solving the two‐dimensional shallow water equations. In this paper, the classical Runge–Kutta (RK) time discretisation is replaced by the eigenvector‐based reconstruction (EVR) that allows the second‐order time accuracy to be achieved within a single time‐stepping procedure. Moreover, the EVRDG approach yields stable solutions near drying and wetting fronts, whereas the classical RKDG approach yields instabilities. The proposed EVRDG technique is compared with the original RKDG approach on various test cases with analytical solutions. The EVRDG solutions are shown to be as accurate as those obtained with the RKDG scheme. Besides, the EVRDG scheme is 1.6 times faster than the RKDG method. Simulating dambreaks involving dry beds confirms that EVRDG scheme gives correct solutions, whereas the RKDG method yields instabilities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This study extends the upstream flux‐splitting finite‐volume (UFF) scheme to shallow water equations with source terms. Coupling the hydrostatic reconstruction method (HRM) with the UFF scheme achieves a resultant numerical scheme that adequately balances flux gradients and source terms. The proposed scheme is validated in three benchmark problems and applied to flood flows in the natural/irregular river with bridge pier obstructions. The results of the simulations are in satisfactory agreement with the available analytical solutions, experimental data and field measurements. Comparisons of the present results with those obtained by the surface gradient method (SGM) demonstrate the superior stability and higher accuracy of the HRM. The stability test results also show that the HRM requires less CPU time (up to 60%) than the SGM. The proposed well‐balanced UFF scheme is accurate, stable and efficient to solve flow problems involving irregular bed topography. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an approach to develop high‐order, temporally accurate, finite element approximations of fluid‐structure interaction (FSI) problems. The proposed numerical method uses an implicit monolithic formulation in which the same implicit Runge–Kutta (IRK) temporal integrator is used for the incompressible flow, the structural equations undergoing large displacements, and the coupling terms at the fluid‐solid interface. In this context of stiff interaction problems, the fully implicit one‐step approach presented is an original alternative to traditional multistep or explicit one‐step finite element approaches. The numerical scheme takes advantage of an arbitrary Lagrangian–Eulerian formulation of the equations designed to satisfy the geometric conservation law and to guarantee that the high‐order temporal accuracy of the IRK time integrators observed on fixed meshes is preserved on arbitrary Lagrangian–Eulerian deforming meshes. A thorough review of the literature reveals that in most previous works, high‐order time accuracy (higher than second order) is seldom achieved for FSI problems. We present thorough time‐step refinement studies for a rigid oscillating‐airfoil on deforming meshes to confirm the time accuracy on the extracted aerodynamics reactions of IRK time integrators up to fifth order. Efficiency of the proposed approach is then tested on a stiff FSI problem of flow‐induced vibrations of a flexible strip. The time‐step refinement studies indicate the following: stability of the proposed approach is always observed even with large time step and spurious oscillations on the structure are avoided without added damping. While higher order IRK schemes require more memory than classical schemes (implicit Euler), they are faster for a given level of temporal accuracy in two dimensions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This study proposes a new two‐step three‐time level semi‐Lagrangian scheme for calculation of particle trajectories. The scheme is intended to yield accurate determination of the particle departure position, particularly in the presence of significant flow curvature. Experiments were performed both for linear and non‐linear idealized advection problems, with different flow curvatures. Results for simulations with the proposed scheme, and with three other semi‐Lagrangian schemes, and with an Eulerian method are presented. In the linear advection problem the two‐step three‐time level scheme produced smaller root mean square errors and more accurate replication of the angular displacement of a Gaussian hill than the other schemes. In the non‐linear advection experiments the proposed scheme produced, in general, equal or better conservation of domain‐averaged quantities than the other semi‐Lagrangian schemes, especially at large Courant numbers. In idealized frontogenesis simulations the scheme performed equally or better than the other schemes in the representation of sharp gradients in a scalar field. The two‐step three‐time level scheme has some computational overhead as compared with the other three semi‐Lagrangian schemes. Nevertheless, the additional computational effort was shown to be worthwhile, due to the accuracy obtained by the scheme in the experiments with large time steps. The most remarkable feature of the scheme is its robustness, since it performs well both for small and large Courant numbers, in the presence of weak as well strong flow curvatures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The development of a numerical scheme for non‐hydrostatic free surface flows is described with the objective of improving the resolution characteristics of existing solution methods. The model uses a high‐order compact finite difference method for spatial discretization on a collocated grid and the standard, explicit, single step, four‐stage, fourth‐order Runge–Kutta method for temporal discretization. The Cartesian coordinate system was used. The model requires the solution of two Poisson equations at each time‐step and tridiagonal matrices for each derivative at each of the four stages in a time‐step. Third‐ and fourth‐order accurate boundaries for the flow variables have been developed including the top non‐hydrostatic pressure boundary. The results demonstrate that numerical dissipation which has been a problem with many similar models that are second‐order accurate is practically eliminated. A high accuracy is obtained for the flow variables including the non‐hydrostatic pressure. The accuracy of the model has been tested in numerical experiments. In all cases where analytical solutions are available, both phase errors and amplitude errors are very small. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the flow/acoustics splitting method for predicting flow‐generated noise is further developed by introducing high‐order finite difference schemes. The splitting method consists of dividing the acoustic problem into a viscous incompressible flow part and an inviscid acoustic part. The incompressible flow equations are solved by a second‐order finite volume code EllipSys2D/3D. The acoustic field is obtained by solving a set of acoustic perturbation equations forced by flow quantities. The incompressible pressure and velocity form the input to the acoustic equations. The present work is an extension of our acoustics solver, with the introduction of high‐order schemes for spatial discretization and a Runge–Kutta scheme for time integration. To achieve low dissipation and dispersion errors, either Dispersion‐Relation‐Preserving (DRP) schemes or optimized compact finite difference schemes are used for the spatial discretizations. Applications and validations of the new acoustics solver are presented for benchmark aeroacoustic problems and for flow over an NACA 0012 airfoil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a new approach to MUSCL reconstruction for solving the shallow‐water equations on two‐dimensional unstructured meshes. The approach takes advantage of the particular structure of the shallow‐water equations. Indeed, their hyperbolic nature allows the flow variables to be expressed as a linear combination of the eigenvectors of the system. The particularity of the shallow‐water equations is that the coefficients of this combination only depend upon the water depth. Reconstructing only the water depth with second‐order accuracy and using only a first‐order reconstruction for the flow velocity proves to be as accurate as the classical MUSCL approach. The method also appears to be more robust in cases with very strong depth gradients such as the propagation of a wave on a dry bed. Since only one reconstruction is needed (against three reconstructions in the MUSCL approach) the EVR method is shown to be 1.4–5 times as fast as the classical MUSCL scheme, depending on the computational application. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
A simple error analysis is used within the context of segregated finite element solution scheme to solve incompressible fluid flow. An error indicator is defined based on the difference between a numerical solution on an original mesh and an approximated solution on a related mesh. This error indicator is based on satisfying the steady‐state momentum equations. The advantages of this error indicator are, simplicity of implementation (post‐processing step), ability to show regions of high and/or low error, and as the indicator approaches zero the solution approaches convergence. Two examples are chosen for solution; first, the lid‐driven cavity problem, followed by the solution of flow over a backward facing step. The solutions are compared to previously published data for validation purposes. It is shown that this rather simple error estimate, when used as a re‐meshing guide, can be very effective in obtaining accurate numerical solutions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A composite finite volume method (FVM) is developed on unstructured triangular meshes and tested for the two‐dimensional free‐surface flow equations. The methodology is based on the theory of the remainder effect of finite difference schemes and the property that the numerical dissipation and dispersion of the schemes are compensated by each other in a composite scheme. The composite FVM is formed by global composition of several Lax–Wendroff‐type steps followed by a diffusive Lax–Friedrich‐type step, which filters out the oscillations around shocks typical for the Lax–Wendroff scheme. To test the efficiency and reliability of the present method, five typical problems of discontinuous solutions of two‐dimensional shallow water are solved. The numerical results show that the proposed method, which needs no use of a limiter function, is easy to implement, is accurate, robust and is highly stable. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
A depth‐averaged two‐dimensional model has been developed in the curvilinear co‐ordinate system for free‐surface flow problems. The non‐linear convective terms of the momentum equations are discretized based on the explicit–finite–analytic method with second‐order accuracy in space and first‐order accuracy in time. The other terms of the momentum equations, as well as the mass conservation equation, are discretized by the finite difference method. The discretized governing equations are solved in turn, and iteration in each time step is adopted to guarantee the numerical convergence. The new model has been applied to various flow situations, even for the cases with the presence of sub‐critical and supercritical flows simultaneously or sequentially. Comparisons between the numerical results and the experimental data show that the proposed model is robust with satisfactory accuracy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
A finite element method for quasi‐incompressible viscous flows is presented. An equation for pressure is derived from a second‐order time accurate Taylor–Galerkin procedure that combines the mass and the momentum conservation laws. At each time step, once the pressure has been determined, the velocity field is computed solving discretized equations obtained from another second‐order time accurate scheme and a least‐squares minimization of spatial momentum residuals. The terms that stabilize the finite element method (controlling wiggles and circumventing the Babuska–Brezzi condition) arise naturally from the process, rather than being introduced a priori in the variational formulation. A comparison between the present second‐order accurate method and our previous first‐order accurate formulation is shown. The method is also demonstrated in the computation of the leaky‐lid driven cavity flow and in the simulation of a crossflow past a circular cylinder. In both cases, good agreement with previously published experimental and computational results has been obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a multigrid algorithm is developed for the third‐order accurate solution of Cauchy–Riemann equations discretized in the cell‐vertex finite‐volume fashion: the solution values stored at vertices and the residuals defined on triangular elements. On triangular grids, this results in a highly overdetermined problem, and therefore we consider its solution that minimizes the residuals in the least‐squares norm. The standard second‐order least‐squares scheme is extended to third‐order by adding a high‐order correction term in the residual. The resulting high‐order method is shown to give sufficiently accurate solutions on relatively coarse grids. Combined with a multigrid technique, the method then becomes a highly accurate and efficient solver. We present some results to demonstrate its accuracy and efficiency, including both structured and unstructured triangular grids. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A new finite volume method for the incompressible Navier–Stokes equations, expressed in arbitrary Lagrangian–Eulerian (ALE) form, is presented. The method uses a staggered storage arrangement for the pressure and velocity variables and adopts an edge‐based data structure and assembly procedure which is valid for arbitrary n‐sided polygonal meshes. Edge formulas are presented for assembling the ALE form of the momentum and pressure equations. An implicit multi‐stage time integrator is constructed that is geometrically conservative to the precision of the arithmetic used in the computation. The method is shown to be second‐order‐accurate in time and space for general time‐dependent polygonal meshes. The method is first evaluated using several well‐known unsteady incompressible Navier–Stokes problems before being applied to a periodically forced aeroelastic problem and a transient free surface problem. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号