首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The authors investigate Petrov-Galerkin spectral element method. Some results on Legendre irrational quasi-orthogonal approximations are established, which play important roles in Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems of partial differential equations defined on polygons. As examples of applications, spectral element methods for two model problems, with the spectral accuracy in certain Jacobi weighted Sobolev spaces, are proposed. The techniques developed in this paper are also applicable to other higher order methods.  相似文献   

2.
In this paper, we propose the Laguerre spectral method for high order problems with mixed inhomogeneous boundary conditions. It is also available for approximated solutions growing fast at infinity. The spectral accuracy is proved. Numerical results demonstrate its high effectiveness.  相似文献   

3.
In this paper, we consider the Petrov–Galerkin spectral method for fourth‐order elliptic problems on rectangular domains subject to non‐homogeneous Dirichlet boundary conditions. We derive some sharp results on the orthogonal approximations in one and two dimensions, which play important roles in numerical solutions of higher‐order problems. By applying these results to a fourth‐order problem, we establish the H2‐error and L2‐error bounds of the Petrov–Galerkin spectral method. Numerical experiments are provided to illustrate the high accuracy of the proposed method and coincide well with the theoretical analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Our aim in this article is to show how one can improve the numerical solution of singularity perturbed problems involving boundary layers. Incorporating the structures of boundary layers into finite element spaces can improve the accuracy of approximate solutions and result in significant simplifications. In this article we discuss convection‐diffusion equations in the two‐dimensional space with a homogeneous Dirichlet boundary condition and a mixed boundary condition. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

5.
In this article, we consider a variant of the Dual Reciprocity Method (DRM) for solving boundary value problems based on approximating source terms by polynomials other than the traditional basis functions. The use of pseudo‐spectral approximations and symbolic methods enables us to obtain highly accurate results without solving the often ill‐conditioned equations that occur when radial basis function approximations are used. When the given partial differential equation is either Poisson's equation or an inhomogeneous Helmholtz‐type equation, we are able to obtain either closed form particular solutions or efficient recursive algorithms. Using the particular solutions, we convert the inhomogeneous equations to homogeneous. The resulting homogeneous equations are then amenable to solution by boundary‐type methods such as the Boundary Element Method (BEM) or the Method of Fundamental Solutions (MFS). Using the MFS, we provide numerical solutions to a variety of boundary value problems in R2 and R3 . Using this approach, we can achieve high accuracy with a modest number of interpolation and collocation points. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 112–133, 2003  相似文献   

6.
In this paper, we investigate the pseudospectral method on quadrilaterals. Some results on Legendre-Gauss-type interpolation are established, which play important roles in the pseudospectral method for partial differential equations defined on quadrilaterals. As examples of applications, we propose pseudospectral methods for two model problems and prove their spectral accuracy in space. Numerical results demonstrate the efficiency of the suggested algorithms. The approximation results and techniques developed in this paper are also applicable to other problems defined on quadrilaterals.  相似文献   

7.
Initial‐boundary value problems for integrable nonlinear partial differential equations have become tractable in recent years due to the development of so‐called unified transform techniques. The main obstruction to applying these methods in practice is that calculation of the spectral transforms of the initial and boundary data requires knowledge of too many boundary conditions, more than are required to make the problem well‐posed. The elimination of the unknown boundary values is frequently addressed in the spectral domain via the so‐called global relation, and types of boundary conditions for which the global relation can be solved are called linearizable. For the defocusing nonlinear Schrödinger equation, the global relation is only known to be explicitly solvable in rather restrictive situations, namely homogeneous boundary conditions of Dirichlet, Neumann, and Robin (mixed) type. General nonhomogeneous boundary conditions are not known to be linearizable. In this paper, we propose an explicit approximation for the nonlinear Dirichlet‐to‐Neumann map supplied by the defocusing nonlinear Schrödinger equation and use it to provide approximate solutions of general nonhomogeneous boundary value problems for this equation posed as an initial‐boundary value problem on the half‐line. Our method sidesteps entirely the solution of the global relation. The accuracy of our method is proven in the semiclassical limit, and we provide explicit asymptotics for the solution in the interior of the quarter‐plane space‐time domain.  相似文献   

8.
Well‐posedness and regularity results are shown for a class of free boundary problems consisting of diffusion on a free domain where the boundary movement depends on its mean curvature of the boundary and the diffusion on the boundary, and initial conditions are radially symmetric. Short‐time existence and uniqueness of solutions in a suitable Sobolev space are shown using a fixed‐point argument. Higher regularity is a posteriori. Finally, it is shown that solutions exist globally in time and converge to equilibrium if the boundary movement depends on the mean curvature of the boundary and diffusion in a specific way. A mathematical model describing the swelling of a cell due to osmosis is treated as an example. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
We consider a class of non‐selfadjoint operators generated by the equation and the boundary conditions, which govern small vibrations of an ideal filament with non‐conservative boundary conditions at one end and a heavy load at the other end. The filament has a non‐constant density and is subject to a viscous damping with a non‐constant damping coefficient. The boundary conditions contain two arbitrary complex parameters. We derive the spectral asymptotics for the aforementioned two‐parameter family of non‐selfadjoint operators. In the forthcoming papers, based on the asymptotical results of the present paper, we will prove the Riesz basis property of the eigenfunctions. The spectral results obtained in the aforementioned papers will allow us to solve boundary and/or distributed controllability problems for the filament using the spectral decomposition method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
This article deals with trace operators on anisotropic Lizorkin–Triebel spaces with mixed norms over cylindrical domains with smooth boundary. As a preparation we include a rather self‐contained exposition of Lizorkin–Triebel spaces on manifolds and extend these results to mixed‐norm Lizorkin–Triebel spaces on cylinders in Euclidean space. In addition Rychkov's universal extension operator for a half space is shown to be bounded with respect to the mixed norms, and a support preserving right‐inverse of the trace is given explicitly and proved to be continuous in the scale of mixed‐norm Lizorkin–Triebel spaces. As an application, the heat equation is considered in these spaces, and the necessary compatibility conditions on the data are deduced.  相似文献   

11.
Using results on abstract evolutions equations and recently obtained results on elliptic operators with discontinuous coefficients including mixed boundary conditions we prove that quasilinear parabolic systems admit a local, classical solution in the space of p–integrable functions, for some p greater than 1, over a bounded two dimensional space domain. The treatment of such equations in a space of integrable functions enables us to define the normal component of the current across the boundary of any Lipschitz subset. As applications we have in mind systems of reaction diffusion equations, e.g. van Roosbroeck’s system.  相似文献   

12.
An iterative procedure for determining temperature fields from Cauchy data given on a part of the boundary is presented. At each iteration step, a series of mixed well‐posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L2‐space is included, as well as a stopping criteria for the case of noisy data. Moreover, a solvability result in a weighted Sobolev space for a parabolic initial boundary value problem of second order with mixed boundary conditions is presented. Regularity of the solution is proved. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this paper, we propose a composite Laguerre-Legendre spectral method for two-dimensional exterior problems. Results on the composite Laguerre-Legendre approximation, which is a set of piecewise mixed approximations coupled with domain decomposition, are established. These results play important roles in the related spectral methods for exterior problems. As examples of applications, the composite spectral schemes are provided for two model problems, with the convergence analysis. An efficient implementation is described. Numerical results demonstrate the spectral accuracy in space of this new approach, and confirm the analysis. The approximation results and techniques developed in this paper are also applicable to other problems defined on unbounded domains.  相似文献   

14.
In this paper, we apply the dual reciprocity boundary elements method for the numerical solution of two‐dimensional linear and nonlinear time‐fractional modified anomalous subdiffusion equations and time‐fractional convection–diffusion equation. The fractional derivative of problems is described in the Riemann–Liouville and Caputo senses. We employ the linear radial basis function for interpolation of the nonlinear, inhomogeneous and time derivative terms. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity which appears in the nonlinear problems under consideration. The accuracy and efficiency of the proposed schemes are checked by five test problems. The proposed method is employed for solving some examples in two dimensions on unit square and also in complex regions to demonstrate the efficiency of the new technique. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
We consider the inhomogeneous Neumann initial–boundary value problem for the nonlinear Schrödinger equation, formulated on a half-line. We study traditionally important problems of the theory of nonlinear partial differential equations, such as global in time existence of solutions to the initial–boundary value problem and the asymptotic behavior of solutions for large time.  相似文献   

16.
Direct scattering problems for partially coated piecewise homogenous and inhomogeneous layered obstacles in linear elasticity lead to mixed impedance transmission problems for the steady‐state elastic oscillation equations. For a piecewise homogenous isotropic composite body, we employ the potential method and reduce the mixed impedance transmission problem to an equivalent system of boundary pseudodifferential equations. We give a detailed analysis of the corresponding pseudodifferential operators, which live on the interface between the layers and on a proper submanifold of the boundary of the composite elastic body, and establish uniqueness and existence results for the original mixed impedance transmission problem for arbitrary values of the oscillation frequency parameter; this is crucial in the study of inverse elastic scattering problems for partially coated layered obstacles. We also investigate regularity properties of solutions near the collision curves, where the different boundary conditions collide, and establish almost best Hölder smoothness results. Further, we analyze the asymptotic behavior of the stress vector near the collision curve and derive explicit formulas for the stress singularity exponents. The case of Lipschitz surfaces is briefly treated separately. In the case of a composite body containing homogeneous or inhomogeneous finite anisotropic inclusions, we develop an alternative hybrid method based on the so‐called nonlocal approach and reduce the mixed transmission problem to an equivalent functional‐variational equation with a sesquilinear form that ‘lives’ on a bounded part of the layered composite body and its boundary. We show that this sesquilinear form is coercive and that the corresponding variational equation is uniquely solvable. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper describes well‐posedness, spectral representations, and approximations of solutions of uniformly elliptic, second‐order, divergence form elliptic boundary value problems on exterior regions U in when N ≥ 3. Inhomogeneous Dirichlet, Neumann, and Robin boundary conditions are treated. These problems are first shown to be well‐posed in the space E1(U) of finite‐energy functions on U using variational methods. Spectral representations of these solutions involving Steklov eigenfunctions and solutions subject to zero Dirichlet boundary conditions are described. Some approximation results for the A‐harmonic components are obtained. Positivity and comparison results for these solutions are given. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
We study trace theorems for three-dimensional, time-dependent solenoidal vector fields. The interior function spaces we consider are natural for solving unsteady boundary value problems for the Navier-Stokes system and other systems of partial differential equations. We describe the space of restrictions of such vector fields to the boundary of the space-time cylinder and construct extension operators from this space of restrictions defined on the boundary into the interior. Only for two exceptional, but useful, values of the spatial smoothness index, the spaces for which we construct extension operators is narrower than the spaces in which we seek restrictions. The trace spaces are characterized by vector fields having different smoothnesses in directions tangential and normal to the boundary; this is a consequence of the solenoidal nature of the fields. These results are fundamental in the study of inhomogeneous boundary value problems for systems involving solenoidal vector fields. In particular, we use the trace theorems in a study of inhomogeneous boundary value problems for the Navier-Stokes system of viscous incompressible flows.

  相似文献   


19.
J. Banasiak In this paper, we deal with spectral properties of a weighted Laplacian in the half‐space when a Dirichlet or a Neumann boundary condition is imposed. After proving that the spectrum is discrete under suitable assumptions, we give explicit formulae of eigenvalues and eigenfunctions in a specific case. In particular, the obtained eigenfunctions are rational or pseudo‐rational and have remarkable orthogonality properties. These results suggest the use of the discovered functions for approximating solutions of elliptic problems in the half‐space. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper,we review some results on the spectral methods.We frst consider the Jacobi spectral method and the generalized Jacobi spectral method for various problems,including degenerated and singular diferential equations.Then we present the generalized Jacobi quasi-orthogonal approximation and its applications to the spectral element methods for high order problems with mixed inhomogeneous boundary conditions.We also discuss the related spectral methods for non-rectangular domains and the irrational spectral methods for unbounded domains.Next,we consider the Hermite spectral method and the generalized Hermite spectral method with their applications.Finally,we consider the Laguerre spectral method and the generalized Laguerre spectral method for many problems defned on unbounded domains.We also present the generalized Laguerre quasi-orthogonal approximation and its applications to certain problems of non-standard type and exterior problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号