首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We consider a two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity. In both the focusing and defocusing case we prove local well-posedness, i.e., existence and uniqueness of the solution for short times, as well as energy and mass conservation. In addition, we prove that this implies global existence in the defocusing case, irrespective of the power of the nonlinearity, while in the focusing case blowing-up solutions may arise.  相似文献   

2.
We consider the two-dimensional stochastic damped nonlinear wave equation (SdNLW) with the cubic nonlinearity, forced by a space-time white noise. In particular, we investigate the limiting behavior of solutions to SdNLW with regularized noises and establish triviality results in the spirit of the work by Hairer et al. (2012). More precisely, without renormalization of the nonlinearity, we establish the following two limiting behaviors; (i) in the strong noise regime, we show that solutions to SdNLW with regularized noises tend to 0 as the regularization is removed and (ii) in the weak noise regime, we show that solutions to SdNLW with regularized noises converge to a solution to a deterministic damped nonlinear wave equation with an additional mass term.  相似文献   

3.
In this paper, we consider the scattering for the nonlinear Schr¨odinger equation with small,smooth, and localized data. In particular, we prove that the solution of the quadratic nonlinear Schr¨odinger equation with nonlinear term |u|2involving some derivatives in two dimension exists globally and scatters. It is worth to note that there exist blow-up solutions of these equations without derivatives. Moreover, for radial data, we prove that for the equation with p-order nonlinearity with derivatives, the similar results hold for p ≥2d+32d-1and d ≥ 2, which is lower than the Strauss exponents.  相似文献   

4.
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all ℝ. Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of ℝ. This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem).  相似文献   

5.
We consider the asymptotic behavior of the solution of the Cauchy problem for a nonlinear Sobolev-type equation at large times. Such an equation describes the pressure of a fluid in a porous medium or a potential in a semiconductor. We develop ideas used for the investigation of classical and Sobolev equations. In particular, we show that the linear term influences the qualitative behavior of the solution, while the derivatives of the third power of the solution do not.  相似文献   

6.
In this paper we consider a nonlinear wave equation with damping and source term on the whole space. For linear damping case, we show that the solution blows up in finite time even for vanishing initial energy. The criteria to guarantee blowup of solutions with positive initial energy are established both for linear and nonlinear damping cases. Global existence and large time behavior also are discussed in this work. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We study conditions for the existence of a solution of a periodic problem for a model nonlinear equation in the spatially multidimensional case and consider various types of large time asymptotics (exponential and oscillating) for such solutions. The generalized Kolmogorov-Petrovskii-Piskunov equation, the nonlinear Schrödinger equation, and some other partial differential equations are special cases of this equation. We analyze the solution smoothing phenomenon under certain conditions on the linear part of the equation and study the case of nonsmall initial data for a nonlinearity of special form. The leading asymptotic term is presented, and the remainder in the asymptotics of the solution is estimated in a spatially uniform metric.  相似文献   

8.
In this paper we analyze the global existence of classical solutions to the initial boundary-value problem for a nonlinear parabolic equation describing the collective behavior of an ensemble of neurons. These equations were obtained as a diffusive approximation of the mean-field limit of a stochastic differential equation system. The resulting nonlocal Fokker-Planck equation presents a nonlinearity in the coefficients depending on the probability flux through the boundary. We show by an appropriate change of variables that this parabolic equation with nonlinear boundary conditions can be transformed into a non standard Stefan-like free boundary problem with a Dirac-delta source term. We prove that there are global classical solutions for inhibitory neural networks, while for excitatory networks we give local well-posedness of classical solutions together with a blow up criterium. Surprisingly, we will show that the spectrum for the operator in the linear case, that corresponding to a system of uncoupled networks, does not give any information about the large time asymptotic behavior.  相似文献   

9.
We consider a nonlinear semi-classical Schrödinger equation for which it is known that quadratic oscillations lead to focusing at one point, described by a nonlinear scattering operator. If the initial data is an energy bounded sequence, we prove that the nonlinear term has an effect at leading order only if the initial data have quadratic oscillations; the proof relies on a linearizability condition (which can be expressed in terms of Wigner measures). When the initial data is a sum of such quadratic oscillations, we prove that the associate solution is the superposition of the nonlinear evolution of each of them, up to a small remainder term. In an appendix, we transpose those results to the case of the nonlinear Schrödinger equation with harmonic potential.  相似文献   

10.
We consider a nonlinear equation with fractional derivative in which the nonlinearity has the form of a linear combination of convective and nonconvective types. We prove the time-global existence of solutions of the Cauchy problem and find their asymptotics at large times uniformly with respect to the space variable. The proof method is based on a detailed investigation of the behavior of the Green function, which permits one to drop the restriction of smallness of the initial data in the case of a nonlinearity of special form.  相似文献   

11.
We consider the first initial-boundary value problem for multidimensional strongly nonlinear equations with double nonlinearity of pseudoparabolic type in a bounded domain with sufficiently smooth boundary. We prove the local solvability of this problem in the weak generalized sense. Depending on the nonlinearity and initial conditions under consideration, we prove the solvability of the equation in any finite cylinder (x, t) ∈ Ω × [0, T] or the destruction of the solution in finite time.  相似文献   

12.
We consider problems for the nonlinear Boltzmann equation in the framework of two models: a new nonlinear model and the Bhatnagar-Gross-Krook model. The corresponding transformations reduce these problems to nonlinear systems of integral equations. In the framework of the new nonlinear model, we prove the existence of a positive bounded solution of the nonlinear system of integral equations and present examples of functions describing the nonlinearity in this model. The obtained form of the Boltzmann equation in the framework of the Bhatnagar-Gross-Krook model allows analyzing the problem and indicates a method for solving it. We show that there is a qualitative difference between the solutions in the linear and nonlinear cases: the temperature is a bounded function in the nonlinear case, while it increases linearly at infinity in the linear approximation. We establish that in the framework of the new nonlinear model, equations describing the distributions of temperature, concentration, and mean-mass velocity are mutually consistent, which cannot be asserted in the case of the Bhatnagar-Gross-Krook model.  相似文献   

13.
We consider the nonlinear Schrödinger equation in higher dimension with Dirichlet boundary conditions and with a nonlocal smoothing nonlinearity. We prove the existence of small amplitude periodic solutions. In the fully resonant case we find solutions which at leading order are wave packets, in the sense that they continue linear solutions with an arbitrarily large number of resonant modes. The main difficulty in the proof consists in a “small divisor problem” which we solve by using a renormalisation group approach.  相似文献   

14.
In this paper we provide sufficient conditions for the existence of solutions to multipoint boundary value problems for nonlinear ordinary differential equations. We consider the case where the solution space of the associated linear homogeneous boundary value problem is less than 2. When this solution space is trivial, we establish existence results via the Schauder Fixed Point Theorem. In the resonance case, we use a projection scheme to provide criteria for the solvability of our nonlinear boundary value problem. We accomplish this by analyzing a link between the behavior of the nonlinearity and the solution set of the associated linear homogeneous boundary value problem.  相似文献   

15.
We consider a 1-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We deal with non-negative solutions and analyze the stability behavior of its unique positive equilibrium solution, which is given by the constant function u≡1. We show that if the delay is small, this equilibrium solution is asymptotically stable, similar as in the case without delay. We also show that, as the delay goes to infinity, this equilibrium becomes unstable and undergoes a cascade of Hopf bifurcations. The structure of this cascade will depend on the parameters appearing in the equation. This equation shows some dynamical behavior that differs from the case where the nonlinearity with delay is in the interior of the domain.  相似文献   

16.
ABSTRACT

In this work, we consider the two-dimensional stationary and non-stationary tidal dynamic equations and examine the asymptotic behavior of the stationary solution. We prove the existence and uniqueness of weak and strong solutions of the stationary tidal dynamic equations in bounded domains using compactness arguments. Using maximal monotonicity property of the linear and nonlinear operators, we also establish that the solvability results are even valid in unbounded domains. Later, we obtain a uniform Lyapunov stability of the steady state solution. Finally, we remark that the stationary solution is exponentially stable if we add a suitable dissipative term in the equation corresponding to the deviations of free surface with respect to the ocean bottom. This exponential stability helps us to ensure the mass conservation of the modified system, if we choose the initial data of the modified system as stationary solution.  相似文献   

17.
We study the large time behavior of solutions of a one-dimensional hyperbolic relaxation system that may be written as a nonlinear damped wave equation. First, we prove the global existence of a unique solution and their decay properties for sufficiently small initial data. We also show that for some large initial data, solutions blow-up in finite time. For quadratic nonlinearities, we prove that the large time behavior of solutions is given by the fundamental solution of the viscous Burgers equation. In some other cases, the convection term is too weak and the large time behavior is given by the linear heat kernel.  相似文献   

18.
We discuss a class of linear and nonlinear diffusion-type partial differential equations on a bounded interval and discuss the possibility of replacing the boundary conditions by certain linear conditions on the moments of order 0 (the total mass) and of another arbitrarily chosen order n. Each choice of n induces the addition of a certain potential in the equation, the case of zero potential arising exactly in the special case of n=1 corresponding to a condition on the barycenter. In the linear case we exploit smoothing properties and perturbation theory of analytic semigroups to obtain well-posedness for the classical heat equation (with said conditions on the moments). Long time behavior is studied for both the linear heat equation with potential and certain nonlinear equations of porous medium or fast diffusion type. In particular, we prove polynomial decay in the porous medium range and exponential decay in the fast diffusion range, respectively.  相似文献   

19.
We consider the integro-differential Burgers equation which appears in nonlinear acoustics. The integral term in the right-hand side describes the relaxation (memory) effects. The global existence and uniqueness of solution is proved. The smoothness of the solution is studied.In the case when the coefficients of the equation rapidly oscillate, we replace it by the homogenized equation with constant coefficients and prove the error estimates.  相似文献   

20.
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is de_ned on all . Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of . This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally, in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号