首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Recently, we showed that unoccupied Kohn‐Sham (KS) orbitals stemming from DFT calculations of a neutral system can be used to derive accurate estimates of the free energy and electronic couplings for excess electron transfer in DNA (Félix and Voityuk, J Phys Chem A 2008, 112, 9043). In this article, we consider the propagation of radical cation states (hole transfer) through DNA π‐stacks and compare the performance of different exchange‐correlation functionals to estimate the hole transfer (HT) parameters. Two different approaches are used: (1) calculations that use occupied KS orbitals of neutral π stacks of nucleobases, and (2) the time‐dependent DFT method which is applied to the radical cation states of these stacks. Comparison of the calculated parameters with the reference data suggests that the best results are provided by the KS scheme with hybrid functionals (B3LYP, PBE0, and BH&HLYP). The TD DFT approach gives significantly less accurate values of the HT parameters. In agreement with high‐level ab initio results, the KS scheme predicts that the hole in π stacks is confined to a single nucleobase; in contrast, the spin‐unrestricted DFT method considerably overestimates the hole delocalization in the radical cations. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
The beta-carotene radical cation and deprotonated neutral radicals were studied at the density functional theory (DFT) level using different density functionals and basis sets: B3LYP/3-21G, SVWN5/6-31G*, BPW91/DGDZVP2, and B3LYP/6-31G**. The geometries, total energies, spin distributions, and isotropic and anisotropic hyperfine coupling constants of these species were calculated. Deprotonation of the methyl group at the double bond of the cyclohexene ring of the carotenoid radical cation at 5 or 5' produces the most stable neutral radical because of retention of the pi-conjugated system while less stable deprotonation at 9 or 9' and 13 or 13' of the chain methyl groups causes significant distortion of the conjugation. The predicted methyl hyperfine coupling constants of 13-16 MHz of the neutral radicals are in good agreement with the previous electron nuclear double resonance (ENDOR) spectrum of photolyzed beta-carotene on a solid support. DFT calculations on the beta-carotene radical cation in a polar water environment showed that the polar environment does not cause significant changes in the proton hyperfine constants from those in the isolated gas-phase molecule. DFT calculated methyl proton hyperfine coupling constants of less than 7.2 MHz are in agreement with those reported for the radical cation in photosystem II (PS II) and those found in the absence of UV light for the radical cation on a silica alumina matrix.  相似文献   

3.
4.
Bond distances, dissociation energies, ionization potentials and electron affinities of 4d transition metal monoxides from YO to CdO and their positive and negative ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, SVWN, MPW1PW91 and PBE1PBE. It was found that calculated properties are highly dependent on the functionals employed, especially for dissociation energy. For most neutral species, pure density functionals BLYP, BPW91 and BP86 have good performance in predicting dissociation energy than hybrid density functionals B3LYP, B3PW91 and B3P86. In addition, BLYP gives the largest bond distance compared with other density functional methods, while SVWN gives shortest bond distance, largest dissociation energy and electron affinity. For the ground state, the spin multiplicity of the charged species can be obtained by ± 1 of their corresponding neutral species.  相似文献   

5.
The theoretical determination of electric response properties of the biological systems is a field where the application of density functional theory (DFT) appears to be quite promising. In this work, the performance of 41 density functional methods is evaluated in predicting dynamic polarizabilities of an experimental benchmark set of 20 proteinogenic amino acids. The behavior of a large number of density functionals, including various types of the local spin density approximation (LSDA), generalized gradient approximation (GGA), meta‐GGA (m‐GGA), hybrid‐GGA (h‐GGA), hybrid meta‐GGA (hm‐GGA), and range‐separated hybrid‐GGA (rsh‐GGA), has been assessed for the purpose. Analyzing the results of our DFT benchmarking, we found that these computationally economical methods show very diverse predictive capability and a careful selection of DFT functionals is very important in the polarizability calculations. Considering the role of exchange, correlation, dispersion and long‐range corrections, it turned out that in the LSDA class, SVWN3 gives better results than SPL and SVWN5 toward the reference values. Of the GGA methods, OPBE outperforms all other functionals. The M06‐L is the best method of m‐GGA class. The B3LYP and TPSSh are the best functionals of h‐GGA and hm‐GGA lineages, respectively. Finally, CAM‐B3LYP is the best method of rsh‐GGA functionals that predicts the most accurate polarizability for amino acids by a large margin with respect to others. Overall, the best performing functionals turn out to be hm‐GGAs TPSSh, TPSS1KCIS, M05, tau‐HCTHhyb, and h‐GGA B3LYP. Hopefully, the results of this investigation might provide the useful guidance to propose a new exchange‐correlation functional for calculating the optical properties of biomolecular materials. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Density functional theory (DFT) using SVWN5, B3LYP, B3P86, O3LYP, B3PW91, B1LYP, B971, MPW1PW91, PBE1PBE, BHandH, and BHandHLYP density functionals was employed to study the structural characteristics of the Y(H2O) 8 3+ yttrium aqua ion. The nonlocal hybrid GGA functionals show worse predictive ability in structural calculations of the Y(H2O) 8 3+ aqua ion compared to the relatively simple combined functional BHandH and to the simplest SVWN5 functional in LSDA theory.  相似文献   

7.
8.
Calculations using the complete active space self-consistent field (CASSCF) and complete active space second-order perturbation (CASPT2) methods, and the multistate formulation of CASPT2 (MS-CASPT2), are performed for the ground and excited states of radical anions consisting of two pi-stacked nucleobases. The electronic couplings for excess electron transfer (EET) in the pi-stacks are estimated by using the generalized Mulliken-Hush approach. We compare results obtained within the different methods with data derived using Koopmans' theorem approximation at the Hartree-Fock level. The results suggest that although the one-electron scheme cannot be applied to calculate electron affinities of nucleobases, it provides reasonable estimates for EET energies. The electronic couplings calculated with KTA lie between the CASPT2 and the MS-CASPT2 based values in almost all cases.  相似文献   

9.
We examine the applicability of density functional theory (DFT) to the polarizability of Cn- (n = 3-9) cluster anions. This was achieved by comparing DFT calculations using two different exchange-correlation functionals (the non-empirical local density approximation, LDA, and the semiempirical hybrid functional B97-1) to quantum chemical calculations using the coupled cluster method in the CCSD(T) "gold standard" approximation. We find that, unless the extra electron is not bound at all by DFT, both LDA and B97-1 agree with the CCSD(T) calculation to within 5-10%, allowing for a meaningful qualitative and semiquantitative analysis. Furthermore, the polarizability is found to increase monotonically with chain size, consistent with the trend inferred from electron detachment experiments.  相似文献   

10.
Reaction energies were determined for reductive ring-opening reactions of Li+-coordinated ethylene carbonate (EC) and vinylene carbonate (VC) by using various density functional theory (DFT) and ab-initio methods applying the basis sets up to Dunnings aug-cc-pVQZ. The methods examined include the local density functional (SVWN), the pure gradient-corrected density functionals (BLYP and BPW91), and the hybrid density functionals (B3LYP, B1LYP, B3PW91, and mPW1PW91). Comparison of the DFT results with ab-initio results indicates that the mPW1PW91 approach introduced by Adamo and Barone, is superior to all the other DFT methods (including B3LYP). The performance of more cost-effective Pople-type basis sets ranging from 6-31G(d,p) to 6-311++G(3df,3pd) was assessed at DFT levels of theory by calibrating them with the aug-cc-pVQZ results  相似文献   

11.
Quantum chemical calculations at the gradient corrected DFT level using the exchange correlation functionals BP86 and B3LYP of the geometries of the title compounds are reported. The theoretically predicted bond lengths and angles of the model compounds are in excellent agreement with experiment. The nature of the metal-ligand interactions is quantitatively analyzed with an energy decomposition method. The analysis of the electronic structure of the neutral metal germylyne complexes Ia-Id and the metallogermylenes IIa-IId shows that the former compounds have about the same degree of electrostatic and covalent bonding, while the relative strength of the covalent contributions in the latter molecules is lower (41-42%) than the electrostatic attraction (58-59%). The a' '(pi) bonding contribution in the group-6 germylyne complexes Ia-Ic is rather high (42% of the orbital interactions). In the iron complex Id, it is even higher (53.8%) than the sigma bonding. The pi bonding contributions to the covalent bonding become much less (18-20%) in the metallogermylenes IIa-IId.  相似文献   

12.
Density functional theory (DFT) methods with various exchange-correlation functionals such as SVWN, BVWN, BVWN5, BLYP, B1LYP, B3LYP, B3PW91, and BH and H are employed in a theoretical study of molecular boric-acid in gas-phase. In the calculations, the split valence 6-311++G** and 6-31G* basis sets were used. The geometry, zero-point vibrational energies (ZPVEs), and harmonic infrared vibrational (IR) frequencies are predicted. The calculated C3h-symmetry geometrical parameters are compared with Hartree–Fock (HF) calculation results and experimental data. IR frequencies predicted by the BLYP, B3LYP, and B3PW91 calculations are in good agreement with experimental data. The frequency calculations presented here also suggest that the C3h-symmetrical structure corresponds to a minimum in the potential energy surface, but neither is D3h- or C3-symmetrical structure.  相似文献   

13.
Molecular structures, energetics, vibrational frequencies, and electron affinities are predicted for the phenylethynyl radical and its isomers. Electron affinities are computed using density functional theory, -namely, the BHLYP, BLYP, B3LYP, BP86, BPW91, and B3PW91 functionals-, employing the double-zeta plus polarization DZP++ basis set; this level of theory is known to perform well for the computation of electron affinities. Furthermore, ab initio computations employing perturbation theory, coupled cluster with single and double excitations [CCSD], and the inclusion of perturbative triples [CCSD(T)] are performed to determine the relative energies of the isomers. These higher level computations are performed with the correlation consistent family of basis sets cc-pVXZ (X = D, T, Q, 5). Three electronic states are probed for the phenylethynyl radical. In C2v symmetry, the out-of-plane (2B1) radical is predicted to lie about 10 kcal/mol below the in-plane (2B2) radical by DFT methods, which becomes 9.4 kcal/mol with the consideration of the CCSD(T) method. The energy difference between the lowest pi and sigma electronic states of the phenylethynyl radical is also about 10 kcal/mol according to DFT; however, CCSD(T) with the cc-pVQZ basis set shows this energy separation to be just 1.8 kcal/mol. The theoretical electron affinities of the phenylethynyl radical are predicted to be 3.00 eV (B3LYP/DZP++) and 3.03 eV (CCSD(T)/DZP++//MP2/DZP++). The adiabatic electron affinities (EAad) of the three isomers of phenylethynyl, that is, the ortho-, meta-, and para-ethynylphenyl, are predicted to be 1.45, 1.40, and 1.43 eV, respectively. Hence, the phenylethynyl radical binds an electron far more effectively than the three other radicals studied. Thermochemical predictions, such as the bond dissociation energies of the aromatic and ethynyl C-H bonds and the proton affinities of the phenylethynyl and ethynylphenyl anions, are also reported.  相似文献   

14.
Recently, Ishida and co-workers have isolated silylene radical anions via the one-electron reduction of isolable cyclic dialkylsilylenes, discovering these corresponding radical anions to be relatively stable at low temperatures. Herein we report theoretical predictions of the adiabatic electron affinities (AEA), vertical electron affinities, and vertical detachment energies of a series of methyl, silyl, and halosubstituted silylene compounds. This research utilizes the carefully calibrated DZP++ basis with the combination of the popular nonhybrid and hybrid DFT functionals, BLYP, B3LYP, and BHHLYP. The level of theory employed and the ensemble of species under study confirm the ability of silylenes to bind excess electrons with Si(SiH(3))(2) being the most effective, having a predicted AEA of 1.95 eV. While it is known that methyl substituents have a diminishing effect on the computed electron affinities (EAs), it is shown that fluorine shows an analogous negative effect. Similarly, previous suggestions that Si(CH(3))(2) will not bind an electron appear incorrect, with EA[Si(CH(3))(2)] predicted here to be 0.46 eV.  相似文献   

15.
Radical anions of a diphosphene with two boryl substituents were isolated and characterized by single‐crystal X‐ray diffraction, electron spin resonance (ESR), and UV/Vis absorption spectroscopy as well as DFT calculations. Structural analysis of the radical anions revealed an elongation of the P=P bond and a contraction of the B−P bonds relative to the neutral diphosphene. The UV/Vis spectra of these radical anions showed a strong absorption in the visible region, which was assigned to SOMO‐related transitions on the basis of DFT calculations. The ESR spectra revealed that the hyperfine coupling constant with the phosphorus nuclei is the smallest that has been reported thus far. The results of the DFT calculations furthermore suggest that this should be attributed to a soaking of electron spin to the vacant p orbitals of the boryl substituents.  相似文献   

16.
The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Moller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.  相似文献   

17.
DFT crystal orbital (band structure) calculations have been performed for the nucleotide base stacks of cytosine, thymine, adenine, and guanine arranged in DNA B geometry. The band structures obtained with PBE, BLYP, and B3LYP functionals are presented and compared to other related experimental and theoretical results. The influence of the quality of the basis set on the fundamental gap values was also investigated using Clementi's double ζ, 6‐31G and 6‐31G* basis sets. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

18.
The electrochemical reduction of benzo[b]thioxanthene-6,11,12-trione and thioxanthene-1,4,9-trione in DMSO, MeCN and HMPA is an EE process, which is characterized by two separate one electron reversible peaks on cyclic voltammograms, first peak retains reversibility in DMSO–H2O mixtures, corresponding radical anions were obtained by one electron reduction of the above compounds and characterized by EPR and DFT calculations at the (U)B3LYP/6-31+G* level of theory.  相似文献   

19.
Eight kinds of density functionals named B3LYP, PBE1PBE, B1B95, BLYP, BP86, G96PW91, mPWPW91, and SVWN along with two different valence basis sets (LANL2DZ and CEP‐121g) are employed to study the transition‐metal dimers for the elements of group VIII. By comparing the equilibrium bond distances, vibrational frequencies, and dissociation energies of the ground state of these dimers with the available experimental values and theoretical data, we show that the “pure” DFT methods (G96PW91, BLYP, and BP86) with great‐gradient approximation always give better results relative to the hybrid HF/DFT schemes (B3LYP, PBE1PBE, and B1B95). The striking case found by us is that the G96PW91 functional, which is not tested in previous systemic studies, always predicts the dissociation energy to be well. The Ru2 and Os2 dimers are sensitive to not only the functionals employed but also the valence basis sets adopted. The natural bond orbital population is analyzed, and the molecular orbitals of the unpaired electrons are determined. Furthermore, our results indicate that the s and d orbitals of these dimers always hybridize with each other except for Rh2 and Pt2 molecules. And by analyzing the electron configuration of the bonding atom, the dissociation limit of the ground state is obtained. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

20.
The performance of the Hartree-Fock method and the three density functionals B3LYP, PBE0, and CAM-B3LYP is compared to results based on the coupled cluster singles and doubles model in predictions of the solvatochromic effects on the vertical n-->pi* and pi-->pi* electronic excitation energies of acrolein. All electronic structure methods employed the same solvent model, which is based on the combined quantum mechanics/molecular mechanics approach together with a dynamical averaging scheme. In addition to the predicted solvatochromic effects, we have also performed spectroscopic UV measurements of acrolein in vapor phase and aqueous solution. The gas-to-aqueous solution shift of the n-->pi* excitation energy is well reproduced by using all density functional methods considered. However, the B3LYP and PBE0 functionals completely fail to describe the pi-->pi* electronic transition in solution, whereas the recent CAM-B3LYP functional performs well also in this case. The pi-->pi* excitation energy of acrolein in water solution is found to be very dependent on intermolecular induction and nonelectrostatic interactions. The computed excitation energies of acrolein in vacuum and solution compare well to experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号