首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The electronic energy band structure, site and angular momentum decomposed density of states (DOS) of cubic perovskite oxides KNbO3 and KTaO3 have been obtained from a first principles density functional based full potential linearized augmented plane wave (FLAPW) method within a generalized gradient approximation (GGA). The total DOS in valence region is compared with the experimental photo-emission spectra (PES). The calculated DOS is in good agreement with the experimental energy spectra and the features in the spectra are interpreted by comparison with the projected density of states (PDOS). The valence band PES is mainly composed of Nb-4d/Ta-5d and O 2p states in KNbO3 and KTaO3, respectively. Using the PDOS and the band structure we have analyzed the inter-band contribution to the optical properties of these materials. The real and imaginary parts of the dielectric function have been calculated and compared with experimental data. They are found to be in a reasonable agreement. The role of band structure on the optical properties have been discussed.  相似文献   

2.
The structural stability, electronic structure, optical and thermodynamic properties of NaMgH3 have been investigated using the density functional theory. Good agreement is obtained for the bulk crystal structure using both the local density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange-correlation energy. It is found from the electronic density of states (DOS) that the valence band is dominated by the hydrogen atoms while the conduction band is dominated by Na and Mg empty states. Also, the DOS reveals that NaMgH3 is a large gap insulator with direct band gap 3.4 eV. We have investigated the optical response of NaMgH3 in partial band to band contributions and the theoretical optical spectrum is presented and discussed in this study. Optical response calculation suggests that the imaginary part of dielectric function spectra is assigned to be the interband transition. The formation energy for NaMgH3 is investigated along different reaction pathways. We compare and discuss our result with the measured and calculated enthalpies of formation found in the literature.  相似文献   

3.
杨春燕  张蓉  张利民  可祥伟 《物理学报》2012,61(7):77702-077702
采用基于第一性原理密度泛函理论的平面波赝势方法,对0.5NdAlO3-0.5CaTiO3晶体进行结构优化,并对其能带结构,态密度和光学性质进行了理论计算.结构优化后晶格参数与实验数据相符合,误差小于1%;能带计算结果表明0.5NdAlO3-0.5CaTiO3为间接带隙,带隙值为0.52eV;费米面附近的能带由Nd-4f,O-2p,Nd-4p,Al-3p,Ti-4d层的电子态密度确定.同时也计算了该结构的介电函数,反射率和复折射率等光学性质.  相似文献   

4.
The electronic density of states (DOS), band structure and optical properties of orthorhombic SbTaO4 are studied by first principles full potential-linearized augmented plane wave (FP-LAPW) method. The calculation is done in the framework of density functional theory with the exchange and correlation effects treated using generalized gradient approximation (GGA). We find an indirect band gap of 1.9 eV at the R→Γ symmetry direction of the Brillouin zone in SbTaO4. It is observed that there is a strong hybridization between Ta-5d and O-2p electronic states which is responsible for the electronic properties of the system. Using the projected DOS and band structure we have analyzed the interband contribution to the optical properties of SbTaO4. The real and imaginary parts of the dielectric function of SbTaO4 are calculated, which correspond to electronic transitions from the valence band to the conduction band. The band gap obtained is in close agreement with the experimental data.  相似文献   

5.
Suleyman Cabuk 《哲学杂志》2020,100(5):601-618
ABSTRACT

Based on first principles computations, the structural, mechanical, electronic band structure, and optical properties of SeZnO3 compound have been predicted. The dependence of selected observables of SeZnO3 compound on the effective U (the Hubbard on-site Coulomb repulsion) parameter has been investigated in detail. The elastic constant, Young’s modulus, bulk modulus, shear modulus, Poisson ratio, anisotropic factor, acoustic velocity, and Debye temperature have been computed. The calculated electronic band structure and density of states indicate that SeZnO3 is a semiconductor material and has indirect band gap. The computations of the optical spectra, as a function of the incident photon radiation in 0–35?eV energy range has also been performed and the interband transitions are examined. The results indicate that Hubbard parameter plays a crucial role in explaining mechanical, electronic, and optical properties of SeZnO3.  相似文献   

6.
The structural, electronic, and optical properties of ZnSnO3 were investigated using density functional theory within the generalized gradient approximation. The structure parameters obtained agree well with the experimental results. The electronic structures indicate that ZnSnO3 is a semiconductor with a direct band gap of 1.0 eV. The calculated optical spectra can be assigned to contributions of the interband transitions from valence band O 2p levels to conduction band Sn 5s levels or higher conduction band Zn 3d levels in the low-energy region, and from O 2p to Sn 5p or Zn 4p conduction band in the high-energy region.  相似文献   

7.
The electronic energy-band structure, density of states (DOS), and optical properties of AgBO3 in the paraelectric cubic phase have been studied by using density functional theory within the local density approximation for exchange-correlation for the first time. The band structure shows a band gap of 1.533 eV (AgNbO3)and 1.537 eV (AgTaO3)at (M-⌈)point in the Brillouin zone. The optical spectra of AgBO3 in the photon energy range up to 30 eV are investigated under the scissor approximation. The real and imaginary parts of the dielectric function and — thus the optical constants such as reflectivity, absorption coefficient, electron energy-loss function, refractive index, and extinction coefficient — are calculated. We have also made some comparisons with related experimental and theoretical data that is available.   相似文献   

8.
The electronic structure, total density of states DOS and electronic density in ferroelectric tetragonal crystal BaTiO3 are studied using WIEN2k package. This employs the full potential-linearized augmented plan wave FP-LAPW method in the framework of the density functional theory DFT with the generalized gradient approximation (GGA). The results show an indirect band gap of 2.30 eV at the Γ point in the Brillouin zone. The calculated band structure and density of states of BaTiO3 agree with the previous experimental and theoretical results, as do the charge distribution and the prediction of the nature of the chemical bonding. Received 11 December 2002 / Received in final form 3 February 2003 Published online 1st April 2003 RID="a" ID="a"e-mail: salehihamid@yahoo.com  相似文献   

9.
Electronic structure and optical properties of SrHfO3 are calculated using the full potential linearized augmented plane wave plus local orbitals method. The calculated equilibrium lattice is in reasonable agreement with the experimental data. From the density of states (DOS) as well as charge density studies, we find that the bonding between Sr and HfO3 is mainly ionic and that HfO3 entities bond covalently. The complex dielectric functions are calculated, which are in good agreement with the available experimental results. The effect of the spin-orbit coupling on the optical properties is also investigated and found to be quite small.  相似文献   

10.
Abstract

In this study, the elastic, electronic, optical and thermoelectric properties of CaTiO3 perovskite oxide have been investigated using first-principles calculations. The generalised gradient approximation (GGA) has been employed for evaluating structural and elastic properties, while the modified Becke Johnson functional is used for studying the optical response of this compound. In addition to ground state physical properties, we also investigate the effects of pressure (0, 30, 60, 90 and 120 GPa) on the electronic structure of CaTiO3. The application of pressure from 0 to 90 GPa shows that the indirect band gap (Γ-M) of CaTiO3 increases with increasing pressure and at 120 GPa it spontaneously decreases transforming cubic CaTiO3 to a direct (Γ-Γ) band gap material. The complex dielectric function and some optical parameters are also investigated under the application of pressures. All the calculated optical properties have been found to exhibit a shift to the higher energies with the increase of applied pressure suggesting potential optoelectronic device applications of CaTiO3. The thermoelectric properties of CaTiO3 have been computed at 0 GPa in terms of electrical conductivity, thermal conductivity and Seebeck coefficient.  相似文献   

11.
The dielectric properties of LiMn2O4, LiMn1.6Ti0.4O4 and LiMn1.5Ni0.5O4 powders, synthesized by sol-gel method, were determined by analyzing the low-loss region of the electron energy-loss spectroscopy (EELS) spectrum in a transmission electron microscope. From these data, the optical joint density of states (OJDS) was obtained by Kramers-Kronig analysis. Since maxima observed in the OJDS spectra are assigned to interband transitions above the Fermi level, these spectra can be interpreted on the basis of calculated density of states (DOS), carried out with the CASTEP code. Experimental and theoretical results are in good agreement.  相似文献   

12.
The optical properties of intermetallide RuIn3 are investigated by ellipsometry in the spectral range of 0.22–10 μm. The experimental data point to the existence of an energy gap of about 0.5 eV in the electronic spectrum of the compound. The density of the electron states and interband optical conductivity are calculated in terms of the density functional theory. The experimental and theoretical spectra of the optical conductivity are compared. It is found that the formation of basic absorption bands is caused by interband transitions of electrons of the d-band of Ru and p-band of In.  相似文献   

13.
苏锐  何捷  陈家胜  郭英杰 《物理学报》2011,60(10):107101-107101
采用完全势线性缀加平面波方法(FP-LAPW)结合密度泛函+U(DFT+U)模型计算了金红石相VO2的电子结构和光学性质. 电子态密度计算结果表明所采用的方法可以较好的描述体系的导带电子结构. 计算得到体系为导体,V-O键主要由O原子的2 p轨道与V原子的3 d轨道杂化形成,外加光场垂直和平行于c轴时体系的等离子振荡频率为3.44 eV和2.74 eV,光电导率在0-1 eV之间有一个与带内跃迁有关的德鲁德峰,而大于1 eV的光电导率主要由电子带间跃迁产生,得到并分析了带内跃迁过程和带间跃迁过程各自对反射谱和电子能量损失谱的贡献. 关键词: 光电性质 电子结构 缀加平面波方法 2')" href="#">VO2  相似文献   

14.
The electronic structure of AlN in wurtzite and zinc-blende phases is studied experimentally and theoretically. By using X-ray emission spectroscopy, the Al 3p, Al 3s and N 2p spectral densities are obtained. The corresponding local and partial theoretical densities of states (DOS), as well as the total DOS and the band structure, are calculated by using the full potential linearized augmented plane wave method, within the framework of the density functional theory. There is a relatively good agreement between the experimental spectra and the theoretical DOS, showing a large hybridization of the valence states all along the valence band. The discrepancies between the experimental and theoretical DOS, appearing towards the high binding energies, are ascribed to an underestimation of the valence band width in the calculations, or to extra states in the optical and ionic gaps due to the presence of point defects or impurities. Differences between the wurtzite and zinc-blende phases are small and reflect the slight variations between the atomic arrangements of both phases.Received: 25 October 2004, Published online: 23 December 2004PACS: 78.70.En X-ray emission spectra and fluorescence - 71.20.Nr Semiconductor compounds - 71.15.Mb Density functional theory, local density approximation, gradient and other corrections  相似文献   

15.
The structural and electronic properties of sodium bromide (NaBr) are investigated by the density functional theory (DFT) within the generalized gradient approximation (GGA) for the exchange and correlation energy. The equilibrium lattice constant, bulk modulus and its pressure derivative are obtained by fitting the calculated total energy to the third-order Birch-Murnaghan equation of state. The band structure along the higher symmetry axes in the Brillouin zone, the density of states (DOS) and the partial density of states (PDOS) are presented. The results have been discussed and compared with the available experimental and theoretical data.  相似文献   

16.
La2NiO4 compounds were prepared by a modified sol–gel auto-combustion method, which is a low-temperature combustion synthesis procedure using microwave-assisted sol–gel as precursors. The high-temperature transport properties of the samples were investigated. The band structure, total density of states (DOS), and partial density of states (PDOS) of low-temperature orthorhombic (Bmab) phase and high-temperature tetragonal (I4/mmm) phase for La2NiO4 were calculated in order to study the transport properties of the as-obtained samples.  相似文献   

17.
The optical properties of hexagonal intermetallic compounds YNi5 − x Cu x (x = 0, 1, 2) have been investigated by ellipsometry in the spectral range of 0.22–15 μm. It is shown that the replacement of nickel atoms by copper atoms leads to local changes in the optical-conductivity spectra. A new absorption band is found at 3.5–4.5 eV; its intensity depends on the copper content. The plasma and relaxation frequencies of conduction electrons are determined. The electronic structure and interband optical conductivity of these compounds are calculated within the electron density functional theory using the pseudopotential method. The main parameters of the band structure and the total and partial densities of electronic states are determined. Qualitative agreement is obtained between the experimental and theoretical frequency dependences of the optical conductivity.  相似文献   

18.
We studied the evolution of the electronic structure of VO2 across the metal-insulator transition. The electronic structure was calculated using the standard TB-LMTO-ASA method. The calculated DOS was compared to previous photoemission and X-ray absorption spectra. The electronic structure is discussed in terms of the usual molecular-orbital scheme. In the metallic phase, the d band appears at the bottom of the V 3d bands and crosses the Fermi level. In the insulating phase, the d band is split around 2 eV opening a pseudo band gap at the Fermi level. The largest effect of the splitting appears in the unoccupied part of the d band. The calculated value of the splitting accounts for 77% of the experimental value, 2.6 eV. The results suggest that electron-lattice interaction seems to be the dominant factor in the splitting of the d band.  相似文献   

19.
We report a detailed theoretical calculation of the electronic band structure of CeO2 in cubic and orthorhombic phases under pressure using a tight-binding linear muffin-tin orbital method (TB-LMTO) within local density approximation (LDA). The compressibility behavior of this compound was discussed in the light of the changes occurring in the electronic structure. Apart from the electronic band structure and structural stability calculations, the density of states (DOS) and Fermi energies (Ef) at various pressures are calculated. The calculated lattice parameter, transition pressure, bulk modulus and the pressure-volume relation are found out to be in good agreement with experimental results.  相似文献   

20.
左都罗  李道火 《物理学报》1994,43(3):424-432
采用经表面优化的对称球形团簇作Si34,Si晶态量子点的模型,利用紧束缚近似和recursion方法研究了它们的电子结构,给出了导带底和价带顶位置随量子点尺寸的变化。得到了328原子Si34量子点、323原子Si量子点的中心原子局域态密度及平均态密度,并讨论了态密度和光谱结构的关系,中心原子局域态密度能较好地描述量子点的光谱,这一点得到了实验结果的证实。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号