首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Two derivatives of the wideband alternating-phase low-power technique for zero-residual splitting (WALTZ)-4 decoupling sequence for broadband decoupling named WALTZ-4a and WALTZ-4b were compared for their proton decoupling performance in 31P nuclear magnetic resonance (NMR) spectroscopy using a Siemens Magnetom SP 1.5 T whole-body imager. Version WALTZ-4a originally implemented by the manufacturer doubles and triples the transmitter amplitude of the 90° pulse to achieve the 180° and 270° flip angle required for one composite pulse R in the WALTZ sequence. WALTZ-4b follows the sequence reported from Shaka et al. and leaves the transmitter amplitude constant but increases the durations of the 180° and 270° pulses. The decoupling performance of WALTZ-4b is superior because it requires less transmitter power and, therefore, it is advantageous in all in vivo studies where a low specific absorption rate is desired. When WALTZ-4 is used in combination with a surface coil for transmission the theoretically required flip angles cannot be achieved in the entire sensitive volume of the coil. The decoupling performance was therefore investigated at lower and higher flip angles. Again, WALTZ-4b is advantageous and provides, in certain ranges that are off-resonant from the decoupling frequency, a good decoupling quality even for flip angles that are only 60% of the theoretically required.  相似文献   

2.
In solid-state proton-dipolar-decoupled19F MAS NMR spectroscopy,19F chemical-shift data need to be corrected for the Bloch–Siegert shift. Assigning the single sharp19F resonance of 2-fluoroadamantane to its proton-coupled19F shift of −174.4 ppm results in chemical-shift referencing that is independent of the amplitude of the proton-decoupling field. The Bloch–Siegert shift is also a useful tool to characterize the amplitude and homogeneity of the proton-decoupling field,H1H, and to monitor probe performance. Considerable inhomogeneity inH1Halong the long axis of the right-cylinder sample rotor was detected. In our commercial 7 mm H– F MAS probe, the proton field strength,[formula], decreases to 25% of the maximum value across the usable sample volume. Measurement of the Bloch–Siegert shift revealed that the proton-decoupling field strength decreases during the first few scans of an acquisition. Reductions in the proton field strengths can exceed 10%, and they are explained by the heating of the RF coil circuitry which is caused by high-power proton decoupling. The extent of reduction in field amplitude is a function of the decoupling duty cycle. Losses in[formula]can be avoided by tuning the probe proton RF circuitry at the operating temperature of the probe, using the Bloch–Siegert shift as an optimization parameter.  相似文献   

3.
(17)O-decoupled (1)H spin-echo imaging has been reported as a means of indirect (17)O detection, with potential application to measurement of blood flow and metabolism. In its current form, (17)O decoupling requires large RF amplitudes and a 180 degrees refocusing pulse, complicating its application in volume and surface coils, respectively. To overcome this problem, we have developed an (17)O-decoupled proton stimulated echo sequence ("STEAM decoupling") to allow (17)O detection with a surface coil. A high B(1) amplitude is easily generated, allowing complete decoupling of (17)O and (1)H. Slice-selective, (17)O-decoupled (1)H imaging is readily performed and the sequence is easily adapted for localized spectroscopy. Intrinsic correction for variations in B(1) and further compensation for B(1) inhomogeneity are discussed.  相似文献   

4.
To provide the most efficient conditions for spin decoupling with least RF power, master calibration curves are provided for the maximum centerband amplitude, and the minimum amplitude for the largest cycling sideband, resulting from STUD+ adiabatic decoupling applied during a single free induction decay. The principal curve is defined as a function of the four most critical experimental input parameters: the maximum amplitude of the RF field,RFmax, the length of the sech/tanh pulse,Tp, the extent of the frequency sweep,bwdth,and the coupling constant,Jo. Less critical parameters, the effective (or actual) decoupled bandwidth,bweff, and the sech/tanh truncation factor, β, which become more important asbwdthis decreased, are calibrated in separate curves. The relative importance of nine additional factors in determining optimal decoupling performance in a single transient are considered. Specific parameters for efficient adiabatic decoupling can be determined via a set of four equations which will be most useful for13C decoupling, covering the range of one-bond13C1H coupling constants from 125 to 225 Hz, and decoupled bandwidths of 7 to 100 kHz, with a bandwidth of 100 kHz being the requirement for a 2 GHz spectrometer. The four equations are derived from a recent vector model of adiabatic decoupling, and experiment, supported by computer simulations. The vector model predicts an inverse linear relation between the centerband and maximum sideband amplitudes, and it predicts a simple parabolic relationship between maximum sideband amplitude and the productJoTp. The ratiobwdth/(RFmax)2can be viewed as a characteristic time scale, τc, affecting sideband levels, with τcTpgiving the most efficient STUD+ decoupling, as suggested by the adiabatic condition. Functional relationships betweenbwdthand less critical parameters,bweffand β, for efficient decoupling can be derived from Bloch-equation calculations of the inversion profile for a single sech/tanh pulse. Residual splitting of the centerband, normally associated with incomplete or inefficient decoupling, is not seen in sech/tanh decoupling and therefore cannot be used as a measure of adiabatic decoupling efficiency. The calibrated experimental performance levels achieved in this study are within 20% of theoretical performance levels derived previously for ideal sech/tanh decoupling at high power, indicating a small scope for further improvement at practical RF power levels. The optimization procedures employed here will be generally applicable to any good combination of adiabatic inversion pulse and phase cycle.  相似文献   

5.
We have investigated the suitability and performance of various decoupling methods on systems in which an observed spin-1/2 nucleusI(13C or15N) is scalar-coupled to a quadrupolar spinS(2H). Simulations and experiments have been conducted by varying the strength of the irradiating radiofrequency (RF) field, RF offset, relaxation times, and decoupling schemes applied in the vicinity of theS-spin resonance. TheT1relaxation of the quadrupolar spin has previously been shown to influence the efficiency of continuous wave (CW) decoupling applied on resonance in such spin systems. Similarly, the performance of broadband decoupling sequences should also be affected by relaxation. However, virtually all of the more commonly used broadband decoupling schemes have been developed without consideration of relaxation effects. As a consequence, it is not obvious how one selects a suitable sequence for decoupling quadrupolar nuclei with exotic relaxation behavior. Herein we demonstrate that, despite its simplicity, WALTZ-16 decoupling is relatively robust under a wide range of conditions. In these systems it performs as well as the more recently developed decoupling schemes for wide bandwidth applications such as GARP-1 and CHIRP-95. It is suggested that in macromolecular motional regimes, broadband deuterium decoupling can be achieved with relatively low RF amplitudes (500–700 Hz) using WALTZ-16 multiple pulse decoupling.  相似文献   

6.
The monopole coil and loop coil have orthogonal radiofrequency (RF) fields and thus are intrinsically decoupled electromagnetically if they are laid out appropriately. In this study, we proposed a hybrid monopole/loop technique which could combine the advantages of both loop arrays and monopole arrays. To investigate this technique, a hybrid RF coil array containing four monopole channels and four loop channels was developed for human head magnetic resonance (MR) imaging at 7 T. In vivo MR imaging and g-factor results using monopole-only channels, loop-only channels and all channels of the hybrid array were acquired and evaluated. Compared with the monopole-only and loop-only channels, the proposed hybrid array has the higher signal-to-noise ratio (SNR) and better parallel imaging performance. Sufficient electromagnetic decoupling and diverse RF magnetic field (B1) distributions of monopole channels and loop channels may contribute to this performance improvement. From experimental results, the hybrid monopole/loop array has low g-factor and excellent SNR at both periphery and center of the brain, which is valuable for human head imaging at ultrahigh fields.  相似文献   

7.
A practical multinuclear transceiver RF volume coil with improved efficiency for in vivo small animal 1H/13C/23Na MR applications at the ultrahigh magnetic field of 7 T is reported. In the proposed design, the coil's resonance frequencies for 1H and 13C are realized by using a traditional double-tuned approach, while the resonant frequency for 23Na, which is only some 4 MHz away from the 13C frequency, is tuned based upon 13C channel by easy-operating capacitive “frequency switches”. In contrast to the traditional triple-tuned volume coil, the volume coil with the proposed design possesses less number of resonances, which helps improve the coil efficiency and alleviate the design and operation difficulties. This coil design strategy is advantageous and well suitable for multinuclear MR imaging and spectroscopy studies, particularly in the case where Larmor frequencies of nuclei in question are not separate enough. The prototype multinuclear coil was demonstrated in the desired unshielded design for easy construction and experiment implementation at 7 T. The design method may provide a practical and robust solution to designing multinuclear RF volume coils for in vivo MR imaging and spectroscopy at ultrahigh fields. Finite difference time domain method simulations for evaluating the design and 7-T MR experiment results acquired using the prototype coil are presented.  相似文献   

8.
The behavior of nuclear quadrupole resonance (NQR) signals between RF pulses of the strong off-resonance comb (SORC) as well as the spin-locking spin-echo (SLSE) pulse sequences was studied as for 14N NQR line ν ?+? of dimethylnitramine (CH3)2NNO2 at 77 K. The periodic variation of the signal amplitude observed by using SORC pulse sequence could be reasonably explained by the theoretical expression reported in the literature.  相似文献   

9.
Transceiver-Phased Arrays for Human Brain Studies at 7 T   总被引:1,自引:0,他引:1  
The paper describes technological advances in high-field (7 T) transceiver-phased arrays developed for magnetic resonance imaging of the human brain. The first part of this work describes an 8-element inductively decoupled split elliptical transceiver-phased array with selectable geometry, which provides an easy and efficient way of compensating for changes in mutual inductive coupling associated with difference in loading due to variability in head shape and size. The second part of the work describes a double-row 16-element (2 × 8) transceiver array to extend the homogeneous transmit B 1 profile in the longitudinal direction. Multiplexing eight transmit channels between the two rows of the array provides homogeneous excitation over the entire volume. The final section describes design and construction of a double-tuned 31P/1H 16-element (8 at each frequency) array. The array improves transmission efficiency and B 1 homogeneity at 1H frequency in comparison with 31P/1H quadrature transverse electromagnetic volume coil. For 31P studies, the array also improves transmission efficiency (38%), signal-to-noise ratio (SNR) for central brain locations (20%) and provides substantially greater SNR (up to 400%) for peripheral locations.  相似文献   

10.
Minimizing coupling between coil elements is technically challenging in designing large-sized, volume-type phased-array coils for human head imaging at ultrahigh fields, e.g., 7 T. As a widely used decoupling method, the capacitive decoupling method has shown excellent performance for loop array. However, building a multi-channel loop array with capacitive decoupling method is laborious that tuning frequency and matching of one coil element will affect adjacent elements and even next adjacent elements. In this study, we made an 8-channel loop-array transmit/receive radio-frequency coil on a 7 T magnetic resonance imaging system with the guidance of frequency domain three-dimensional electromagnetic and radio-frequency circuit co-simulation. The position of decoupling capacitors was investigated and values of all capacitors were predicted from co-simulation. The co-simulation approach cost about 2 days and the error of the predicted and practical capacitance was <5 %. To demonstrate the accuracy of simulation, we evaluated the simulated and measured S-parameter matrixes and B 1 + profiles in a birdcage-like excitation mode on a cylindrical water phantom. In addition, B 1 + maps and images of human head were shown with the fabricated coil. To demonstrate the parallel imaging performance of this coil array, GRE images using GRAPPA acceleration with the reduction factor R of 1, 2, 3, and 4 were acquired.  相似文献   

11.
Nuclear magnetic resonance (NMR) signals with shortT 1 andT 2, such as the13C signal of glycogen, are difficult to localize in three dimensions without major signal loss. A pulse sequence that accomplishes the spatial localization of1H-decoupled13C NMR signals on a whole-body scanner within the Food and Drug Administration guidelines for specific absorption rates was designed. The method uses an optimized three-dimensional outer volume suppression scheme combined with one-dimensional image-selected in vivo spectroscopy and surface coil detection. The localization performance of the sequence was validated at 4 T with double chambered phantoms and13C magnetic resonance imaging. Localized13C spectra were acquired from human brain and muscle.  相似文献   

12.
Magnetic resonance imaging (MRI) technique is widely used to capture the images of the liquid items inside the human body. The radio-frequency (RF) coil is one of the important modules present inside an MRI system, which plays a major role in image quality. In this work, a microstrip-based high-pass RF birdcage coil is proposed for 1.5 T MRI. The cylindrical-shaped birdcage coil consists of 12 microstrip radiating elements and tuning capacitors to achieve a resonance at 63.85 MHz. The coil is made up of 10 mm polytetrafluoroethylene substrate coated by a conducting transmission line of desired length and width. A finite difference time domain simulation is carried out to analyze the return loss (S11), magnetic field homogeneity and Specific Absorption Rate (SAR) parameters of the RF coil. The SAR values of the proposed microstrip-based 1.5 T birdcage coil was compared with 3 T RF birdcage coil. The simulation results indicate the proposed birdcage coil structure gives optimal values of S11, magnetic field homogeneity and SAR.  相似文献   

13.
PurposeOver the past decade, many techniques have been developed to reduce radiofrequency (RF) power deposition associated with proton decoupling in in vivo Carbon-13 (13C) magnetic resonance spectroscopy (MRS). In this work we propose a new strategy that uses data under-sampling to achieve reduction in RF power deposition.Materials and methodsEssentially, proton decoupling is required only during randomly selected segments of data acquisition. By taking advantage of the sparse spectral pattern of the carboxylic/amide region of in vivo 13C spectra of brain, we developed an iterative algorithm to reconstruct spectra from randomly under-sampled data. Fully sampled data were used as references. Reconstructed spectra were compared with the fully sampled references and evaluated using residuals and relative signal intensity errors.ResultsNumerical simulations and in vivo experiments at 7 Tesla demonstrated that this novel decoupling and data processing strategy can effectively reduce decoupling power deposition by greater than 30%.ConclusionThis study proposes and evaluates a novel approach to acquire 13C data with reduced proton decoupling power deposition and reconstruct in vivo 13C spectra of carboxylic/amide metabolite signals using randomly under-sampled data. Because proton decoupling is not needed over a significant portion of data acquisition, this novel approach can effectively reduce the required decoupling power and thus SAR. It opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields.  相似文献   

14.
17O magnetic resonance imaging (MRI) using a conventional pulse sequence was explored as a method of quantitative imaging towards regional oxygen consumption rate measurement for tumor evaluation in mice. At 7 T, fast imaging with steady state (FISP) was the best among gradient echo, fast spin echo and FISP for the purpose. The distribution of natural abundance H217O in mice was visualized under spatial resolution of 2.5 × 2.5 mm2 by FISP in 10 min. The signal intensity by FISP showed a linear relationship with 17O quantity both in phantom and mice. Following the injection of 5% 17O enriched saline, 17O re-distribution was monitored in temporal resolution down to 5 sec with an image quality sufficient to distinguish each organ. The image of labeled water produced from inhaled 17O2 gas was also obtained. The present method provides quantitative 17O images under sufficient temporal and spatial resolution for the evaluation of oxygen consumption rate in each organ. Experiments using various model compounds of R-OH type clarified that the signal contribution of body constituents other than water in the present in vivo17O FISP image was negligible.  相似文献   

15.
The maintenance of a gradient of potassium and sodium ions across the cell membranes is essential for the physiological function of the mammal organism. The measurement of the spatial distribution of pathologically changing ion concentrations of 23Na and 39K with magnetic resonance imaging offers a promising approach in clinical diagnostics to measure tissue viability. Existing studies were focused mainly on 23Na imaging as well as spectroscopy with only one post-mortem study for 39K imaging. In this paper a triple resonant RF coil setup for the rat head at 9.4 T is presented for imaging of both nuclei (23Na and 39K) and the acquisition of anatomical proton images in the same experiment without moving the subject or the RF coil. In vivo MR images of 39K and 23Na in the rat brain were acquired as well as anatomical proton images in the same scanning session.  相似文献   

16.
A new operator called RESET “Reducing nuclEar Spin multiplicitiEs to singuleTs” is presented to acquire broadband proton decoupled proton spectra in one and two dimensions. Basically, the homonuclear decoupling is achieved through the application of bilinear rotation pulses and delays. A [BIRD]r,x pulse building block is used to selectively invert all proton magnetization remotely attached to 13C isotopes, which is equivalent to a scalar J decoupling of the protons directly attached to 13C from all other protons in the spin system. In conjunction with an appropriate data processing technique pure shift proton spectra are obtained. For this purpose, the concept of constant time acquisition in the observe dimension is exploited. Both ideas were merged together producing superior HSQC based pseudo 3D pulse sequences. The resulting HSQC spectra show cross peaks with collapsed multiplet structures and singlet responses for the proton chemical shift frequencies. An unambiguous assignment of signals from overcrowded spectra becomes much easier. Finally, the recently introduced SHARC technique is exploited to enhance the capability of the scalar J decoupling method. A significant reduction of the total measurement time is achieved. The time is saved by reducing the number of 13C chemical shift evolution increments and working with superimposed narrow spectral bandwidths in the 13C indirect domain.  相似文献   

17.
The construction of an accessory to commercial whole-body magnetic resonance imaging (MRI) scanners that provides multinuclear capability is described. The multinuclear system has access to all clinical pulse sequences and is not limited by the frequency range of the commercially available “spectroscopic package.” The accessory was used for17O studies with a homebuilt birdcage resonator and a low-noise preamplifier. In vivo17O images of a rhesus monkey brain were obtained. The homebuilt birdcage was transparent to radio-frequency irradiation of the scanner’s body coil at1H frequency allowing consecutive acquisitions of1H and17O images and their superposition. The results demonstrate the potential of17O/1H imaging with whole-body scanners.  相似文献   

18.
The use of multiple radiofrequency (RF) surface coil elements has applications in both fast parallel imaging and conventional imaging techniques. Through implementation of a simple magnetic decoupling network, 50 Omega matching can be achieved in both the transmitter and receiver chains, enabling the use of conventional RF power amplifiers and preamplifiers for transceive applications. Unlike phased array coil arrangements using low impedance preamplifiers for decoupling, the noise correlation between 50 Omega coils decoupled with discrete components has not been characterized. We have measured the dependence of coil quality factor (Q-factor) and noise correlation on coil separation and shown these quantities to be consistent with theoretical arguments, at least at 4 T (170 MHz). Our results suggest that a coil system for transmission and reception of NMR signals with 50 Omega coils can be built to take advantage of all the benefits of conventional array coils and with the added advantages of using conventional amplifiers.  相似文献   

19.
In vivo 31P MRS provides a unique and important imaging tool for studying high-energy phosphate metabolism and bioenergetics noninvasively. However, compared to 1H MRS, 31P MRS with a relatively low gyromagnetic ratio (γ) has a lower and limited sensitivity even at ultrahigh field. The proof of concept has been recently demonstrated that the use of high dielectric constant (HDC) materials between RF coil and object sample could increase MRI signal and reduce required RF transmission power for reaching the same RF pulse flip angle in the region of interest. For low-γ MRS applications operated at relatively lower frequency, however, it demands the dielectric materials with a much higher permittivity for achieving optimal performance. We conducted a 31P MRS imaging study using ultra-HDC (uHDC; with a relative permittivity of ~ 1200) material blocks incorporated with an RF volume coil at ultrahigh field of 7.0 T. The experimental results from phantom and human calf muscle demonstrate that the uHDC technique significantly enhanced RF magnetic transmit field (B1+) and reception field (B1) and the gain could reach up to two folds in the tissue near the uHDC blocks. The overall results indicate that the incorporation of the uHDC materials having an appropriate permittivity value with a RF coil can significantly increase detection sensitivity and reduces RF transmission power for X-nuclei MRS applications at ultrahigh field. The uHDC technology could provide an efficient, cost-effective engineering solution for achieving high detection sensitivity and concurrently minimizing tissue heating concern for human MRS and MRI applications.  相似文献   

20.
Excitation functions for 16O+p reactions have been measured with high energy resolution in the region of the first, second and seventh T = 32 resonances in 17F at extreme backward angles. The observed resonance shapes have been analyzed with a single-level resonance formula taking the off-resonance spin-flip amplitude into account. The resonance parameters of the 17F first T = 32 state studied with special emphasis are Ex = 11193.3 ± 2.3 keV, Γ = 200 ± 40 eV and Γp0 = 19 ± 3 eV. This result and other results are compared with previous studies and theoretical predictions. The comparison with data of the mirror nucleus 17O is discussed with respect to the observed charge asymmetry of the isospin-forbidden particle decay widths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号