首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Selecting most rigorous quantitative structure-activity relationship (QSAR) approaches is of great importance in the development of robust and predictive models of chemical toxicity. To address this issue in a systematic way, we have formed an international virtual collaboratory consisting of six independent groups with shared interests in computational chemical toxicology. We have compiled an aqueous toxicity data set containing 983 unique compounds tested in the same laboratory over a decade against Tetrahymena pyriformis. A modeling set including 644 compounds was selected randomly from the original set and distributed to all groups that used their own QSAR tools for model development. The remaining 339 compounds in the original set (external set I) as well as 110 additional compounds (external set II) published recently by the same laboratory (after this computational study was already in progress) were used as two independent validation sets to assess the external predictive power of individual models. In total, our virtual collaboratory has developed 15 different types of QSAR models of aquatic toxicity for the training set. The internal prediction accuracy for the modeling set ranged from 0.76 to 0.93 as measured by the leave-one-out cross-validation correlation coefficient ( Q abs2). The prediction accuracy for the external validation sets I and II ranged from 0.71 to 0.85 (linear regression coefficient R absI2) and from 0.38 to 0.83 (linear regression coefficient R absII2), respectively. The use of an applicability domain threshold implemented in most models generally improved the external prediction accuracy but at the same time led to a decrease in chemical space coverage. Finally, several consensus models were developed by averaging the predicted aquatic toxicity for every compound using all 15 models, with or without taking into account their respective applicability domains. We find that consensus models afford higher prediction accuracy for the external validation data sets with the highest space coverage as compared to individual constituent models. Our studies prove the power of a collaborative and consensual approach to QSAR model development. The best validated models of aquatic toxicity developed by our collaboratory (both individual and consensus) can be used as reliable computational predictors of aquatic toxicity and are available from any of the participating laboratories.  相似文献   

3.
4.
5.
6.
7.
8.
The main utility of QSAR models is their ability to predict activities/properties for new chemicals, and this external prediction ability is evaluated by means of various validation criteria. As a measure for such evaluation the OECD guidelines have proposed the predictive squared correlation coefficient Q(2)(F1) (Shi et al.). However, other validation criteria have been proposed by other authors: the Golbraikh-Tropsha method, r(2)(m) (Roy), Q(2)(F2) (Schu?u?rmann et al.), Q(2)(F3) (Consonni et al.). In QSAR studies these measures are usually in accordance, though this is not always the case, thus doubts can arise when contradictory results are obtained. It is likely that none of the aforementioned criteria is the best in every situation, so a comparative study using simulated data sets is proposed here, using threshold values suggested by the proponents or those widely used in QSAR modeling. In addition, a different and simple external validation measure, the concordance correlation coefficient (CCC), is proposed and compared with other criteria. Huge data sets were used to study the general behavior of validation measures, and the concordance correlation coefficient was shown to be the most restrictive. On using simulated data sets of a more realistic size, it was found that CCC was broadly in agreement, about 96% of the time, with other validation measures in accepting models as predictive, and in almost all the examples it was the most precautionary. The proposed concordance correlation coefficient also works well on real data sets, where it seems to be more stable, and helps in making decisions when the validation measures are in conflict. Since it is conceptually simple, and given its stability and restrictiveness, we propose the concordance correlation coefficient as a complementary, or alternative, more prudent measure of a QSAR model to be externally predictive.  相似文献   

9.
10.
Variable selection is applied frequently in QSAR research. Since the selection process influences the characteristics of the finally chosen model, thorough validation of the selection technique is very important. Here, a validation protocol is presented briefly and two of the tools which are part of this protocol are introduced in more detail. The first tool, which is based on permutation testing, allows to assess the inflation of internal figures of merit (such as the cross-validated prediction error). The other tool, based on noise addition, can be used to determine the complexity and with it the stability of models generated by variable selection. The obtained statistical information is important in deciding whether or not to trust the predictive abilities of a specific model. The graphical output of the validation tools is easily accessible and provides a reliable impression of model performance. Among others, the tools were employed to study the influence of leave-one-out and leave-multiple-out cross-validation on model characteristics. Here, it was confirmed that leave-multiple-out cross-validation yields more stable models. To study the performance of the entire validation protocol, it was applied to eight different QSAR data sets with default settings. In all cases internal and external model performance was good, indicating that the protocol serves its purpose quite well.  相似文献   

11.
Variable selection is applied frequently in QSAR research. Since the selection process influences the characteristics of the finally chosen model, thorough validation of the selection technique is very important. Here, a validation protocol is presented briefly and two of the tools which are part of this protocol are introduced in more detail. The first tool, which is based on permutation testing, allows to assess the inflation of internal figures of merit (such as the cross-validated prediction error). The other tool, based on noise addition, can be used to determine the complexity and with it the stability of models generated by variable selection. The obtained statistical information is important in deciding whether or not to trust the predictive abilities of a specific model. The graphical output of the validation tools is easily accessible and provides a reliable impression of model performance. Among others, the tools were employed to study the influence of leave-one-out and leave-multiple-out cross-validation on model characteristics. Here, it was confirmed that leave-multiple-out cross-validation yields more stable models. To study the performance of the entire validation protocol, it was applied to eight different QSAR data sets with default settings. In all cases internal and external model performance was good, indicating that the protocol serves its purpose quite well.  相似文献   

12.
The predictive accuracy of the model is of the most concern for computational chemists in quantitative structure-activity relationship (QSAR) investigations. It is hypothesized that the model based on analogical chemicals will exhibit better predictive performance than that derived from diverse compounds. This paper develops a novel scheme called "clustering first, and then modeling" to build local QSAR models for the subsets resulted from clustering of the training set according to structural similarity. For validation and prediction, the validation set and test set were first classified into the corresponding subsets just as those of the training set, and then the prediction was performed by the relevant local model for each subset. This approach was validated on two independent data sets by local modeling and prediction of the baseline toxicity for the fathead minnow. In this process, hierarchical clustering was employed for cluster analysis, k-nearest neighbor for classification, and partial least squares for the model generation. The statistical results indicated that the predictive performances of the local models based on the subsets were much superior to those of the global model based on the whole training set, which was consistent with the hypothesis. This approach proposed here is promising for extension to QSAR modeling for various physicochemical properties, biological activities, and toxicities.  相似文献   

13.
14.
The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.  相似文献   

15.
16.
We describe the use of Bayesian regularized artificial neural networks (BRANNs) coupled with automatic relevance determination (ARD) in the development of quantitative structure-activity relationship (QSAR) models. These BRANN-ARD networks have the potential to solve a number of problems which arise in QSAR modeling such as the following: choice of model; robustness of model; choice of validation set; size of validation effort; and optimization of network architecture. The ARD method ensures that irrelevant or highly correlated indices used in the modeling are neglected as well as showing which are the most important variables in modeling the activity data. The application of the methods to QSAR of compounds active at the benzodiazepine and muscarinic receptors as well as some toxicological data of the effect of substituted benzenes on Tetetrahymena pyriformis is illustrated.  相似文献   

17.
The OECD has proposed five principles for validation of QSAR models used for regulatory purposes. Here we present a case study investigating how these principles can be applied to models based on Kohonen and counter propagation neural networks. The study is based on a counter propagation network model that has been built using toxicity data in fish fathead minnow for 541 compounds. The study demonstrates that most, if not all, of the OECD criteria may be met when modeling using this neural network approach.  相似文献   

18.
Validation is a crucial aspect for quantitative structure–activity relationship (QSAR) model development. External validation is considered, in general, as the most conclusive proof of predictive capacity of a QSAR model. In the absence of truly external data set, external validation is usually performed on test set compounds, which are members of the original data set but not used in model development exercise. In the case of small data sets, QSAR researchers experience problem in model development due to the fact that the developed models may be less reliable on account of the small number of training set compounds and such models may also show poor external predictability because the models may not have captured all necessary features required for the particular structure–activity relationships. The present paper attempts to show that ‘true r(LOO)’ statistic calculated based on the model derived from the undivided data set with application of variable selection strategy at each cycle of leave‐one‐out (LOO) validation may reflect external validation characteristics of the developed model thus obviating the requirement of splitting of the data set into training and test sets. This approach may be helpful in the case of small data sets as it uses all available data for model development and validation thus making the resulting model more reliable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The OECD has proposed five principles for validation of QSAR models used for regulatory purposes. Here we present a case study investigating how these principles can be applied to models based on Kohonen and counter propagation neural networks. The study is based on a counter propagation network model that has been built using toxicity data in fish fathead minnow for 541 compounds. The study demonstrates that most, if not all, of the OECD criteria may be met when modeling using this neural network approach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号