首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High methanol electro-oxidation activity was obtained on novel PtRuFe/C (2:1:1 at.%) catalyst. Mass and specific activities were 5.67 A  g−1 catal. and 177 mA m−2 for the PtRuFe/C catalyst while those of the commercial PtRu/C catalyst were 2.28 A g−1 catal. and 87.7 mA m−2, respectively. CO stripping results showed that on-set voltage for CO electro-oxidation was lowered by incorporation of Fe. XRD and XPS results revealed that Fe2O3 was formed instead of Fe(0), which resulted in large electron deficiency in Pt and easy CO electro-oxidation. The electron deficiency of Pt was proved by XPS results of Pt4f peaks, which moved to higher binding energies in PtRuFe/C than PtRu/C.  相似文献   

2.
Methanol electro-oxidation activity of ternary Pt–Ni–Cr system was studied by using a combinatorial screening method. A Pt–Ni–Cr thin-film library was prepared by sputtering and quickly characterized by a multichannel multielectrode analyzer. Among the 63 different composition thin-film catalysts, Pt28Ni36Cr36 showed the highest methanol electro-oxidation activity and good stability. This new composition was also studied in its powder form by synthesizing and characterizing Pt28Ni36Cr36/C catalyst. In chronoamperometry testing, the Pt28Ni36Cr36/C catalyst exhibited “decay-free” behavior during 600 s operation by keeping its current density up to 97.1% of its peak current density, while the current densities of Pt/C and Pt50Ru50/C catalysts decreased to 14.0% and 60.3% of their peak current densities, respectively. At 600 s operation, current density of the Pt28Ni36Cr36/C catalyst was 23.8 A gnoble metal−1, while that of those of the Pt/C and Pt50Ru50/C catalysts were 2.74 and 18.8 A gnoble metal−1, respectively.  相似文献   

3.
The carbon fibrous mats with high conductivity (50 S cm−1) formed by carbon nanofibers with an average diameter of ∼150 nm have been fabricated by thermally treating the electrospun polyacrylonitrile fibers. The platinum clusters are electrodeposited on the carbon nanofibrous mats (CFMs) by multi-cycle CV method. In contrast to the catalytic peak current of methanol oxidation on commercial catalyst (185 mA mg−1 Pt), the catalytic peak current on optimum Pt/CFM electrode reaches to ∼420 mA mg−1 Pt despite of the large size (50–200 nm) of the Pt clusters, revealing that the special structure of carbon fibrous mats is favorable to improve the performance of catalyst.  相似文献   

4.
Highly ordered anodic titania nanotube arrays provide a large surface area for electrodepositing nickel nanoparticles which are used as the catalyst for carbon nanotube growth. Pt and Ru nanoparticles, approximately 3 nm in diameter, are uniformly electrodeposited on the as synthesized titania-supported carbon nanotubes (CNTs), constructing a novel catalyst for electrocatalytic oxidation of methanol. An enhanced and stable catalytic activity is obtained due to the uniformly dispersed Pt and Ru nanoparticles, and the large CNT network facilitating the electron transfer between the adsorbed methanol molecules and the catalyst substrate. An oxidation peak current density of 55 mA/cm2 is achieved at a low Pt load of 0.126 mg/cm2 with a Pt/Ru mole ratio of 1:1.  相似文献   

5.
We have demonstrated a new, cost effective synthesis of single-walled carbon nanotube supported Pt–Fe core–shell alloy catalyst (Pt–Fe/SWNT) for the direct methanol fuel cell using galvanic exchange reaction. The Pt–Fe/SWNTs have shown much larger Pt active surface area (150 m2/g-Pt) than the commercial catalyst (54 m2/g-Pt). Furthermore, four-fold enhancement of catalytic activity of the Pt–Fe/SWNTs for oxygen reduction reaction (ORR) has been observed. This catalyst has also demonstrated its tolerance to methanol in ORR.  相似文献   

6.
A new procedure has been successfully developed by which PtNx/C is synthesized to enhance methanol tolerance while maintaining a high catalytic activity for the oxygen-reduction reaction (ORR). The nitrogen-modified Pt surface, which is prepared using a chelating agent followed by heat treatment, exhibits considerable selectivity toward the ORR in the presence of methanol. The high methanol tolerance could be attributed to the suppression of methanol adsorption resulting from the modification of the Pt surface with nitrogen. A direct methanol fuel-cell (DMFC) test showed that a power density of up to 120 m W cm−2 was generated when PtNx/C was used as the cathode catalyst (1 mg cm−2) in 6 M methanol and oxygen at 70 °C.  相似文献   

7.
In this work, a new promoter, tetrasulfophthalocyanine (FeTSPc), one kind of environmental friendly material, was found to be very effective in both inhibiting self-poisoning and improving the intrinsic catalysis activity, consequently enhancing the electro-oxidation current during the electro-oxidation of formic acid. The cyclic voltammograms test showed that the formic acid oxidation peak current density has been increased about 10 times compared with that of the Pt electrode without FeTSPc. The electrochemical double potential step chronoamperometry measurements revealed that the apparent activity energy decreases from 20.64 kJ mol−1 to 17.38 kJ mol−1 after Pt electrode promoted by FeTSPc. The promoting effect of FeTSPc may be owed to the specific structure and abundant electrons of FeTSPc resulting in both the steric hindrance of the formation of poisoning species (CO) and intrinsic kinetic enhancement. In the single cell test, the performance of DFAFC increased from 80 mW cm−2 mg−1 (Pt) to 130 mW cm−2 mg−1 after the anode electrode adsorbed FeTSPc.  相似文献   

8.
Graphene nanosheet was prepared by modified Hummer’s chemical method and utilized as a catalyst support of PtRu nanoparticles for the electro-oxidation of methanol. Home-made graphene nanosheet was clearly characterized by Raman spectroscopy and we applied colloidal method to synthesize with high metal content of 80 wt.% Pt–Ru catalyst, which is extensively clarified by HR-TEM and XRD analysis. 80 wt.% Pt–Ru/graphene nanosheet catalyst showed superior electrochemical activity toward methanol oxidation compared to Pt–Ru/Vulcan XC-72R. It is due to the significant increase of electrochemical active surface area for better catalyst utilization.  相似文献   

9.
This research is aimed to increase the activity of anodic catalysts and thus to lower noble metal loading in anodes for methanol electrooxidation. The Pt–Ni–Pb/C catalysts with different molar compositions were prepared. Their performance were tested by using a glassy carbon disk electrode through cyclic voltammetric curves in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4. The performances of Pt–Ni–Pb/C catalyst with optimum composition (the molar ratio of Pt/Ni/Pb is 5:4:1) and Pt/C (E-Tek) were also compared. Their particle sizes and structures were determined by means of X-ray diffraction (XRD). The XRD results show, compared with that of Pt/C, the lattice parameter of Pt–Ni–Pb (5:4:1)/C catalyst decreases, its diffraction peaks are shifted slightly to a higher 2θ values. This indicates the formation of an alloy involving the incorporation of Ni and Pb atoms into the fcc structure of Pt. The electrochemical measurement shows the activity of Pt–Ni–Pb/C catalyst with an atomic ratio of 5:4:1 for methanol electrooxidation is the best among all different compositions. The activity of Pt–Ni–Pb (5:4:1)/C catalyst is much higher than that of Pt/C (E-Tek).  相似文献   

10.
A systematic study on the electrocatalytic properties of Pt nanoparticles supported on nitrobenzene-modified graphene (Pt-NB/G) as catalyst for oxygen reduction reaction (ORR) in alkaline solution was performed. Graphene nanosheets were spontaneously grafted with nitrophenyl groups using 4-nitrobenzenediazonium salt. The electrocatalytic activity towards the ORR and stability of the prepared catalysts in 0.1 M KOH solution have been studied and compared with that of the commercial Pt/C catalyst. The results obtained show that the NB-modified graphene nanosheets can be good Pt catalyst support with high stability and excellent electrocatalytic properties. The specific activity of Pt-NB/G for O2 reduction was 0.184 mA cm−2, which is very close to that obtained for commercial 20 wt% Pt/C catalyst (0.214 mA cm−2) at 0.9 V vs. RHE. The Pt-NB/G hybrid material promotes a four-electron reduction of oxygen and can be used as a promising cathode catalyst in alkaline fuel cells.  相似文献   

11.
Direct methanol fuel cell (DMFC) consisting of a double-catalytic layered membrane electrode assembly (MEA) provide higher performance than that with the traditional MEA. This novel structured MEA includes a hydrophilic inner catalyst layer and a traditional electrode with an outer catalyst layer, which was made using both catalyst coated membrane (CCM) and gas diffusion electrode (GDE) methods. The inner catalyst was PtRu black on anode and Pt black on cathode. The outer catalyst was carbon supported Pt–Ru/Pt on anode and cathode, respectively. Thus in the double-catalytic layered electrodes three gradients were formed: catalyst concentration gradient, hydrophilicity gradient and porosity gradient, resulting in good mass transfer, proton and electron conducting and low methanol crossover. The peak density of DMFC with such MEA was 19 mW cm−2, operated at 2 M CH3OH, 2 atm oxygen at room temperature, which was much higher than DMFC with traditional MEA.  相似文献   

12.
The microstructure of the catalyst layer in proton exchange membrane fuel cells (PEMFCs) greatly influences catalyst (Pt) utilization and cell performance. We demonstrated a functionally graded catalyst layer based on a double-layered carbon nanotube/nanofiber film- (buckypaper) supported Pt composite catalyst to approach an idealized microstructure. The gradient distribution of Pt, electrolyte and porosity along the thickness effectively depresses the transport resistance of proton and gas. A rated power of 0.88 W/cm2 at 0.65 V was achieved at 80 °C with a low Pt loading of 0.11 mg/cm2 resulting in a relatively high Pt utilization of 0.18gPt/kW. The accelerated degradation test of catalyst support showed a good durability of buckypaper support because of the high graphitization degree of carbon nanofibers.  相似文献   

13.
Performance of MEMS-based DMFC is low, because graphite-based porous electrodes show poor compatibility with MEMS technology. Nanoimprint technology was adopted in this paper to prepare fine pattern on proton exchange membrane (PEM) in MEMS-based DMFC as a promising alternative to the graphite-based porous electrodes. Micro-convex with the diameter of about 600 nm and the height of 50–70 nm was prepared on Nafion® 117 membrane by the nanoimprint at 130 °C using silicon mold. Thick Pt film (20 nm) was deposited as catalyst directly on the nanoimprinted Nafion® 117 membrane. Then the Pt-coated PEM was sandwiched with micro-channeled silicon plates to form a micro-DMFC. With passively feeding of 1 M methanol solution and air at room temperature, the as-prepared cell had the open circuit voltage (OCV) of 0.74 V and the maximum power density of 0.20 mW/cm2. The measured OCV was higher than those (0.1–0.3 V) of the state-of-the-art MEMS-based DMFC with planar electrode and pure Pt catalyst.  相似文献   

14.
Dealloyed PtAg/C nanostructures, prepared by selective electrochemical etching of Ag in 0.5 M H2SO4 from a series of alloyed PtmAg/C samples with atomic Pt/Ag ratio m = 0.1, 0.5, 1.0 and 1.5, were employed as cathode electrocatalysts for oxygen reduction reaction (ORR) in 0.5 M KOH. Compared with their as-prepared counterpart alloy catalysts, the dealloyed catalysts showed higher half-wave potentials (E1/2) and significantly higher Pt mass-specific activity (MSA) data. The intrinsic activity (IA) of Pt increased more or less after the dealloying treatment but was strongly dependent on the composition (m) of the alloyed sample. The Pt IA numbers were comparable for the dealloyed catalysts derived from PtmAg/C of m = 0.5, 1.0 and 1.5, which were nearly twice that for E-TEK Pt/C catalyst and 3 times that for the dealloyed catalyst derived from Pt0.1Ag/C.  相似文献   

15.
We characterized the electrocatalytic activity of platinum electrode modified by underpotential deposited lead (PtPbupd) for a formic acid (HCOOH) oxidation and investigated the influence on the power performance of direct formic acid fuel cells (DFAFC). Based on the electrochemical analysis using cyclic voltammetry and chronoamperometry, PtPbupd electrode modified by underpotential deposition (UPD) exhibited significantly enhanced catalytic activity for HCOOH oxidation below anodic overpotential of 0.4 V (vs. SCE). Multi-layered PtPbupd electrode structure of Pt/Pbupd/Pt resulted in more stable and enhanced performance using 50% reduced loading of anode catalyst. The performance of multi-layered PtPbupd anode is about 120 mW/cm2 at 0.4 V and it also showed a sustainable cell activity of 0.52 V at an application of constant current loading of 110 mA/cm2.  相似文献   

16.
The limited stability of fuel cell cathode catalysts causes a significant loss of operational cell voltage with commercial Pt-based catalysts, which hinders the wider commercialization of fuel cell technologies. We demonstrate beneficial effects of a highly rigid and porous polymer of intrinsic microporosity (PIM-EA-TB with BET surface area 1027 m2 g 1) in accelerated catalyst corrosion experiments. Porous films of PIM-EA-TB offer an effective protective matrix for the prevention of Pt/C catalyst corrosion without impeding flux of reagents. The results of electrochemical cycling tests show that the PIM-EA-TB protected Pt/C (denoted here as PIM@Pt/C) exhibit a significantly enhanced durability as compared to a conventional Pt/C catalyst.  相似文献   

17.
The electro-oxidation of methanol at supported tungsten carbide (WC) nanoparticles in sulfuric acid solution was studied using cyclic voltammetry, potentiostatic measurements, and differential electrochemical mass spectroscopy (DEMS). The catalyst was prepared by a sonochemical method and characterized by X-ray diffraction. Over the WC catalyst, the oxidation of methanol (1 M in a sulfuric acid electrolyte) begins at a potential below 0.5 V/RHE during the anodic sweep. During potentiostatic measurements, a maximum current of 0.8 mA mg−1 was obtained at 0.4 V. Measurements of DEMS showed that the methanol oxidation reaction over tungsten carbide produces CO2 (m/z = 44); no methylformate (m/z = 60) was detected. These results are discussed in the context of the continued search for alternative materials for the anode catalyst of direct methanol fuel cells. In memoriam  相似文献   

18.
Nanoscale Ptshell–Aucore/C with a controlled shell thickness was successfully synthesized based on a successive reduction strategy. With a Au core size of 4.8 nm, a complete Pt shell of thickness ∼0.6 nm was formed at Pt/Au mole ratio 1:1. The complete coverage of Au core with Pt shell was suggested by various techniques including TEM, UV–vis and cyclic voltammetry. A higher specific activity compared to conventional Pt/C was demonstrated using the probe reaction of methanol electro-oxidation, proving the improved Pt utilization with this core-shell structure.  相似文献   

19.
Nanostructured PtRu material has been successively synthesized via chemical co-reduction of hexachloroplatinic acid and ruthenium trichloride using three-dimensional (3D) hexagonal mesoporous SBA-12 silica as a solid template, and has been studied as an electrocatalyst toward methanol electro-oxidation. The ordered nanostructure of the PtRu particles has been disclosed by transmission electron micrographs and is characterized by regular pores of ca. 3.0 ± 0.3 nm in diameter separated by walls of ca. 3.0 ± 0.3 nm thick. X-ray diffraction and energy dispersive X-ray spectroscope studies indicate that the PtRu material comprises of complicated phases rather than a single alloy phase of Pt and Ru. The specific electrochemical surface area of the nanostructured powder measured using both CO and underpotential deposited Cu stripping techniques is 74–78 m2 g–1, higher than that of unsupported precious metal catalysts prepared using standard techniques. The combination of high surface area and periodic nanostructure of the templated PtRu makes it an interesting promising fuel cell electrocatalyst. This has been demonstrated by the high activity of the templated PtRu towards the methanol electrooxidation. Therefore the solid template route based on 3D mesoporous silica with controlled pore size and high pore interconnectivity provides an interesting alternative to produce promising high-surface-area electrode materials.  相似文献   

20.
Resorcinol-formaldehyde hydrogels are shown to be adequate separators in electrochemical and photoelectrochemical water splitting cells. Combined with concentrated buffer electrolytes, they allow the maintenance of relatively stable pH gradients between basic anolytes and acidic catholytes. The water splitting potential at a current density of 3.0 mA/cm2 applied between two Pt electrodes and a pH bias of 8.1 units retained a value of 2.7 V for several hours. Using iron foam/hematite as photoanode and Pt as cathode, the water splitting photocurrents at an applied potential of 1.23 V reached values of 0.40 and 0.06 mA/cm2 in the presence and absence, respectively, of this chemical bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号