首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
The influence of bismuth addition on the activity and selectivity of palladium catalysts supported on SiO2 in the reaction of glucose oxidation to gluconic acid was studied. The catalysts modified with Bi show much better selectivity and activity than palladium catalysts. The XRD studies proved the presence of intermetallic compounds BiPd and Bi2Pd, which probably increase activity and selectivity of PdBi/SiO2 catalysts in the oxidation of glucose. The TPO studies of catalysts containing 5 wt.% Pd/SiO2, 3 wt.% Bi/SiO2 and 5 wt.% Pd–5 wt.% Bi/SiO2 show that palladium oxidation occurs at much higher temperatures than in the case of bismuth. The maximum rate of Pd oxidation occurs at around 580 K while the maximum rate of Bi oxidation takes place at around 430 K. Considering the above facts, a reaction involving bimetallic catalysts in oxidizing atmosphere at 333 K should not lead to surface oxidation of palladium and thus their deactivation.  相似文献   

2.
《Comptes Rendus Chimie》2015,18(10):1143-1151
Two series of carbon-supported Pd–Au catalysts were prepared by the reverse “water-in-oil, W/O” method, characterized by various techniques and investigated in the reaction of tetrachloromethane with hydrogen at 423 K. The synthesized nanoparticles were reasonably monodispersed having an average diameter of 4–6 nm (Pd/C and Pd–Au/C) and 9 nm (Au/C). Monometallic palladium catalysts quickly deactivated during the hydrodehalogenation of CCl4. Palladium–gold catalysts with molar ratio Pd:Au = 90:10 and 85:15 were stable and much more active than the monometallic palladium and Au-richer Pd–Au catalysts. The selectivity toward chlorine-free hydrocarbons (especially for C2+ hydrocarbons) was increased upon introducing small amounts of gold to palladium. Simultaneously, for the most active Pd–Au catalysts, the selectivity for undesired dimers C2HxCly, which are considered as coke precursors, was much lower than for monometallic Pd catalysts. Reasons for synergistic effects are discussed. During CCl4 hydrodechlorination the Pd/C and Pd–Au/C catalysts were subjected to bulk carbiding.  相似文献   

3.
In this work, palladium (Pd) nanoparticles/three-dimensional hollow N-doped graphene frameworks (HNGF) hybrid catalysts were fabricated by using amine-functionalized poly (glycidyl methacrylate) microspheres-templated HNGF as supporting materials for Pd nanoparticles (NPs). The results demonstrate that the Pd NPs with average sizes of ~ 5.5 nm can be well dispersed on the surfaces of HNGF with internal circular holes of ~ 400 nm. The Pd/HNGF catalysts exhibit high electrocatalytic activity and durability toward methanol electro-oxidation in alkaline medium, compared to Pd/graphene and Pd/carbon.  相似文献   

4.
The electrocatalytic activity of bimetallic BiPd catalysts supported on Sibunit carbon towards hydrogen oxidation/evolution reactions (HOR/HER) was studied in a gas diffusion electrode (GDE) setup. Catalysts were synthesized by deposition of Pd on the carbon support, followed by impregnation of Pd/C precursor with Bi(NO3)3 solution and reduction in hydrogen. Transmission electron microscopy and local EDX elemental analysis revealed that BiPd/C catalysts contain bimetallic particles with narrow size distribution with maxima at 3.2–4.1 nm. X-ray diffraction evidenced that bimetallic particles are constituted by Pd–Bi solid solution. It was shown that modification of Pd/C by bismuth increases the specific activity of palladium towards HOR/HER by a factor of 3.  相似文献   

5.
A low temperature approach via the complexing of PdCl2 with EDTA followed by NaBH4 reduction has been used to prepare Vulcan XC-72 carbon-supported Pd nanoparticles (Pd/C). The mean particle size of the Pd/C catalysts is found to increase from 3.3 to 9.2 nm with heat-treated temperature. TEM images demonstrated that the Pd nanoparticles are well dispersed on the support with a relatively narrow particle size distribution. A correlation between the electrocatalytic activity of formic acid oxidation and particle size of the Pd/C catalysts indicates that the highest activity of formic acid oxidation is found with a Pd mean particle size of ca. 4.7 nm. The preparation method used here is cost-effective and should be easily scaled for industrial production.  相似文献   

6.
A new technique to prepare a palladium membrane for high-temperature hydrogen permeation was developed: Pd(C3H3)(C5H5) an organometallic precursor reacted with hydrogen at room temperature to decompose into Pd crystallites. This reaction together with sintering treatment under hydrogen and nitrogen in sequence resulted in the formation of dense films of pure palladium on the surface of the mesoporous stainless steel (SUS) support. Under H2 atmosphere the palladium membrane could be sintered at 823 K to form a skin layer inside the support pores. The hydrogen permeance was 5.16×10−2 cm3 cm−2 cm Hg−1 s−1 at 723 K. H2/N2 selectivity was 1600 at 723 K.  相似文献   

7.
A series of solvated metal atom dispersion (SMAD) catalysts: Pd/SiO2, Pd/Al2O3, Sn/SiO2, Sn/Al2O3, PdxSny/SiO2 and PdxSny/Al2O3. It was prepared by simultaneous evaporation of Pd and Sn. The metals were co-deposited at 77 K using acetone, 2-propanol and THF to produce colloids “in situ” all the supported catalyst were characterized by chemisorption, transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and TPR. This series of catalyst were tested for crotonaldehyde hydrogenation in gas phase to obtain crotyl alcohol.  相似文献   

8.
《Solid State Sciences》2004,6(9):973-980
This work deals with the preparation and the characterization of palladium and palladium–molybdenum supported on HY and NaY zeolites, with the aim to study the effect of molybdenum on the properties of palladium. Catalytic performances were tested in the reaction of methane combustion. The introduction of molybdenum in palladium exchanged zeolites NaY and HY was realized in dynamic or static regime (under vacuum) using Mo(CO)6 vapor at ambient temperature. Pd was found to migrate in supercages under the influence of Mo(CO)6, which produces by decomposition, Mo5+ species revealed by EPR spectroscopy and consequently palladium was reduced. Catalytic results show that the activity of PdHY increases with time during a relatively long period compared to the other samples. This activation in stream can be attributed to a slow migration of palladium to supercages. Nevertheless, PdHY and PdMoNaY were less active than PdNaY at 500 °C. The catalytic activity of monometallic samples increases with time, whereas it decreases for bimetallic ones. The comparison of the catalytic activities of Pd and PdMo supported on NaY and HY suggests that the basicity of the support enhances the oxidation ability of palladium by an increase of the electronic density of the metal particles at the surface. The pretreatment conditions exerted also a great effect on the behavior of mono and bimetallic catalysts. The reduction in hydrogen at 500 °C led to a decrease of the combustion activity depending on the nature of the catalyst.  相似文献   

9.
The reaction mechanism for the complete catalytic cycle of the Heck reaction (between phenyl bromide, C6H5Br, and ethylene, C2H4, in the presence of the base, NEt3 to form the product styrene, C6H5–C2H3), catalyzed by diphosphinopalladium complexes, Pd(PR3)2 {R = H, Me, Ph}, was investigated by using density functional theory (DFT). The relative free energies of the fully-optimized species in gas phase at 298.15 K and 1 atm were corrected for solvation in DMSO at 1 mol/L by using conductor-like polarizable continuum model (CPCM). The calculations indicate a four-step mechanism for the catalysis, including oxidative addition of C6H5Br, migratory insertion of C6H5 to C2H4, β-hydride transfer/olefin elimination of product, and catalyst regeneration by removal of HBr. Our calculations demonstrate that Pd π-complexes can be formed with phenyl bromide and ethylene before the oxidative addition occurs. Subsequently, various reaction paths were studied for the oxidative addition of phenyl bromide to palladium complexes, coordinated by phosphine(s) and/or ethylene. Interestingly, all pathways lead to palladium monophosphine as the active catalyst. Careful exploration was made on two possible pathways for the migratory insertion and β-hydride-transfer/olefin elimination: (1) the neutral path with bromide bound to Pd and (2) the cationic path with prior bromide ion dissociation. The neutral path is preferred to the cationic path, especially when the more bulky phosphines such as triphenylphosphine are involved.  相似文献   

10.
Cationic palladium(II) and rhodium(I) complexes bearing 1,2-diaryl-3,4-bis[(2,4,6-tri-t-butylphenyl)phosphinidene]cyclobutene ligands (DPCB–Y) were prepared and their structures and catalytic activity were examined (aryl = phenyl (DPCB), 4-methoxyphenyl (DPCB–OMe), 4-(trifluoromethyl)phenyl (DPCB–CF3)). The palladium complexes [Pd(MeCN)2(DPCB–Y)]X2 (X = OTf, BF4, BAr4 (Ar = 3,5-bis(trifluoromethyl)phenyl)) were prepared by the reactions of DPCB–Y with [Pd(MeCN)4]X2, which were generated from Pd(OAc)2 and HX in MeCN. On the other hand, the rhodium complexes [Rh(MeCN)2(DPCB–Y)]OTf were prepared by the treatment of [Rh(μ-Cl)(cyclooctene)2]2 with DPCB–Y in CH2Cl2, followed by treatment with AgOTf in the presence of MeCN. The cationic complexes catalyzed conjugate addition of benzyl carbamate to α,β-unsaturated ketones.  相似文献   

11.
Isomorphously substituted (MeDM) and impregnated metal-containing MCM-41 (MeOx/IM) catalysts, in which Me = Co, Cu, Cr, Fe or Ni, have been prepared. Structural and textural characterizations of the catalysts were performed by means of X-ray diffraction (XRD), chemical analysis, Raman spectroscopy, electron paramagnetic resonance (EPR), N2 adsorption isotherms and temperature programmed reduction (TPR). Cu2+, Co2+, and Cr4+/Cr3+ species were found over the catalysts as cations incorporated in the MCM-41 structure (MeDM) or highly dispersed oxides on the surface (MeOx/IM). The MeDM catalysts exhibited a good performance in the dehydrogenation of ethylbenzene with CO2. However, MeOx/IM catalysts had a low performance in styrene production (activity less than 15 × 10?3 mmol h?1 and selectivity for styrene less than 80%) due to the high reducibility of the metals species. However, Ni2+ or Fe3+ coordinated with the MCM-41 framework, as well as NiOx and Fe2O3 extra-framework species, is continuously oxidized by the CO2 to maintain the active sites for dehydrogenating ethylbenzene. Deactivation studies on the FeDM sample showed that Fe3+ species produced active sp2 carbon compounds, which are removed by CO2; the referred sample is catalytically selective for styrene and stable over 24 h of reaction. In contrast, highly active Ni2+ and Ni0 species produced a large amount of polyaromatic carbonaceous deposits from styrene, as identified by TPO, TG and Raman spectroscopy. An acid–base mechanism is proposed to operate to adsorb ethylbenzene and abstract the β-hydrogen. CO2 plays a role in furnishing the lattice oxygen to maintain the Fe3+ active sites in the dehydrogenation of ethylbenzene to form styrene.  相似文献   

12.
Hydrogen sensing properties of a Pd/AlGaN-based Schottky diode are improved by the deposition of SiO2 at the metal/semiconductor (MS) interface. The wide Schottky barrier height variation of the MOS diode could be attributed to the large electric field across the SiO2 layer. This leads to the presence of more hydrogen dipoles caused by the polarization effect. The sensing response of the MOS diode at room temperature (1.3 × 105) is comparable to that of the MS one at 150 °C (2.04 × 105). Thus, the MOS-type sensing device shows the benefit of low-temperature operation. Kinetic analyses confirm that the short response times of the MOS diode are attributed to high reaction rate at the Pd/SiO2 interface.  相似文献   

13.
The reaction of dichlorodifluoromethane and hydrogen has been studied in the gas phase at temperatures 438–538 K and atmospheric pressure over Pd and Ru supported AlF3 catalysts prepared by sol–gel method. For the hydrogenation of CF2Cl2, CH2F2 and CH4 represented more than 97% of the products. The catalytic properties of the catalysts are unchanged with time and they showed no significant difference in their activities. At the steady state, the kinetics of the reaction described by a mechanism of a halogenation/dehalogenation of the Pd and Ru surfaces by CF2Cl2 and H2, respectively. The values of the respective rate constants were then determined. It was concluded that at 448 K, the interaction between the Pd and Ru surfaces with CF2Cl2 or H2 is of the same order of magnitude. The conversion ratio on Ru/Pd supported catalysts within the temperature range used was increased from 1.5 to 4.1, while the selectivity of CH2F2/CH4 ratio was decreased from about 17.4 to 1.8 on the surfaces of both catalysts. This leads to the proposition that the high dispersion of Pd and Ru over the support are responsible for the high activity and high selectivity in CH2F2.  相似文献   

14.
《Comptes Rendus Chimie》2015,18(8):816-822
The treatment of [PdL3(NH3)]OTf (L3 = (PEt3)2(Ph) (1), (2,6-(Cy2PCH2)2C6H3) (3)) with NaNH2 in THF afforded dimeric and monomeric parent-amido palladium(II) complexes with bridging and terminal NH2, respectively, anti-[Pd(PEt3)(Ph)(μ-NH2)]2 (2) and Pd(2,6-(Cy2PCH2)2C6H3)(NH2) (4). The dimeric complex 2 crystallizes in the space group P21/n with a = 13.228(2) Å, b = 18.132(2) Å, c = 24.745(2) Å, β = 101.41(1)°, and Z = 4. It has been found that there are two crystallographically independent molecules with Pd(1)–Pd(2) and Pd(3)–Pd(4) distances of 2.9594 (10) and 2.9401(9) Å, respectively. The monomeric amido complex 4 protonates from trace amounts of water to give the cationic ammine species [Pd(2,6-(Cy2PCH2)2C6H3)(NH3)]+. Complex 4 reacts with diphenyliodonium triflate ([Ph2I]OTf) to give aniline complex [Pd(2,6-(Cy2PCH2)2C6H3)(NH2Ph)]OTf (5). Reaction of 4 with dialkyl acetylenedicarboxylate (DMAD, DEAD) yields diastereospecific palladium(II) vinyl derivative (Z)–(Pd(Cy2PCH2)2C6H3)(CR = CR(NH2)) (R = CO2Me (6a), CO2Et (6b)). Reacting complexes 6a and 6b with p-nitrophenol produces (Pd(Cy2PCH2)2C6H3)(OC6H4p-NO2) (8) and cis-CHR = CR(NH2), exclusively.  相似文献   

15.
Pinhole-free palladium/nickel (Pd/Ni) alloy membranes deposited on a porous stainless steel (SUS) support have been fabricated. The deposition was made by vacuum electrodeposition technique which could produce the alloy film less than 1 μm thick. This technique allows for the Pd/Ni alloy by employing Pd/Ni complex reagent, and typical Pd/Ni plating had compositions of 78% Pd and 22% Ni. In order to make the surface smooth and enhance the adhesive bond between the top layer and the substrate, a nascent porous SUS disk was treated sequently with submicron nickel powder and CuCN solution. The important parameters that can affect deposition were pore size, defects, and surface roughness of substrate. The membranes were characterized by permeation experiments with hydrogen and nitrogen at temperatures ranging from 623 to 823 K and pressures from 10.3 to 51.7 cmHg. The composite membranes prepared in this technique yielded excellent separation performance for hydrogen: hydrogen permeance of 5.79×10−2 cm3/cm2 cmHg s and hydrogen/nitrogen (H2/N2) selectivity was 4700 at 823 K.  相似文献   

16.
A method for preconcentration of palladium at trace level on modified multiwalled carbon nanotubes columns and determination by flame atomic absorption spectrometry (FAAS) has been developed. Multiwalled carbon nanotubes (MWCNTs) were oxidized with concentrated HNO3 and the oxidized multiwalled carbon nanotubes were modified with 5-(4′-dimethylamino benzyliden)-rhodanine, and then were used as a solid sorbent for preconcentration of Pd(II) ions. Factors influencing sorption and desorption of Pd(II) ions were investigated. The sorption of Pd(II) ions was quantitative in the pH range of 1.0–4.5, whereas quantitative desorption occurs with 3.0 mL 0.4 mol L?1 thiourea. The amount of eluted palladium was measured using flame atomic absorption spectrometry. The effects of experimental parameters, including sample flow rate, eluent flow rate, and eluent concentration were investigated. The effect of coexisting ions showed no interference from most ions tested. The proposed method permitted a large enrichment factor (about 200). The relative standard deviation of the method was ±2.73% (for eight replicate determination of 2.0 μg mL?1 of Pd(II)) and the limit of detection was 0.3 ng mL?1. The method was applied to the determination of Pd(II) in water, road dust, and standard samples.  相似文献   

17.
The catalytic oxidation of methane was studied over calcined and reduced Pt–Pd/γ-Al2O3 catalysts, in the presence and the absence of SO2 in the CH4–O2 reaction feed. The effect of sulfation (SO2 + O2 for 4 h at 500 °C) was also studied on the catalyst resistance to deactivation by sulfur poisoning. Sulfating the calcined Pt–Pd/γ-Al2O3 catalysts resulted in a strong deactivation for the CH4–O2 reaction. However, the catalytic activity of the reduced-sulfated Pt–Pd/γ-Al2O3 catalyst for CH4–O2 reaction remained rather unaffected in the presence and in the absence of SO2 in the reaction feed. XPS analysis revealed, over reduced-sulfated Pt–Pd/γ-Al2O3 catalysts, the presence of Pt(0) metallic surface species on which SO2 interactions may be faster related to Pd surface species. The presence of Pt(0) may be necessary to prevent the interactions between SO2 and Pd surface species. Long time catalytic tests showed that the activity of a reduced Pt–Pd/γ-Al2O3 catalysts for CH4–O2 reactions remained rather unaffected despite the presence of SO2 in the reaction feed.  相似文献   

18.
The supported bimetallic Fe—Pd/SiO2 catalysts with the different Fe (0.025—8 mass.%) and Pd (0.05—3.2 mass.%) loadings were synthesized by the incipient wetness impregnation of support. The samples were heat-treated under different conditions (calcination in air at 240—350 °C or reduction in an H2 flow at 400 °C). The X-ray phase analysis revealed the formation of Pd0, α-Fe2O3 and Fe3O4 phases after calcination of the samples at 240—260 °C. The reduction of the calcined Fe—Pd samples in an H2 flow at 400 °C enables the formation of Fe0 nanoparticles of size 17—20 nm. The synthesized catalytic systems were studied in the selective hydrogenation of phenylacetylene at room temperature and atmospheric pressure in a solvent (ethanol, propanol). The catalytic properties of the Fe—Pd catalysts depend on the nature of solvent, catalyst composition, and thermal treatment conditions. The application of the Fe—Pd bimetallic catalysts with a low Pd loading of 0.05—0.1 mass.% made it possible to reach the high activity and selectivity to styrene (91%) at the complete conversion of phenylacetylene.  相似文献   

19.
In this paper, a novel Nafion/SiO2 nanocomposite membrane based on the self-assembled Nafion–SiO2 nanoparticles was developed. The average particle size of Nafion–SiO2 nanoparticles prepared by self-assembly process was 2.8 ± 0.5 nm. The self-assembled Nafion–SiO2 nanoparticles significantly enhance the durability of the Nafion/silica nanocomposite membrane as compared to that of conventional Nafion/silica composite and Nafion 212 membranes under wet/dry cyclic tests at 90 °C. With an addition of 5 wt% self-assembled Nafion–SiO2 nanoparticles, the Nafion/SiO2 nanocomposite membrane shows a significantly improved performance stability at cell/humidifying temperatures of 100 °C/60 °C under a current density of 600 mA/cm2, and the degradation rate is 0.12 mV/min, almost 20 times lower than 2.33 mV/min measured on the pristine Nafion 212 membrane under the same conditions. The present results demonstrate the promises of the self-assembled Nafion/SiO2 nanocomposite membrane for elevated-high temperature PEM fuel cells applications.  相似文献   

20.
Three palladium(II) complexes and four platinum(II) complexes having general formula CpFe{1,2-C5H3(PPh2)(CH2SR)}MCl2 (M = Pd, R = Ph, Et and tBu; M = Pt, R = Ph, Et, tBu and Cy) have been synthesized by reaction of the corresponding CpFe{1,2-C5H3(PPh2)(CH2SR)} ligands with PdCl2(CH3CN)2 or PtCl2(CH3CN)2. These complexes have been fully characterized in solution and in solid state. In all cases, monomeric square planar complexes were obtained as pure diastereoisomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号