首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two homologous series of nonionic surfactants, namely Rhom and Haas' tritons (alkylphenol ethoxylates) and Shell dobanols (dobanol ethoxylates) were used to characterize surface properties of ultrafiltration membranes. Static adsorption experiments were carried out to reveal the interactions developed between the membrane and the nonionic surfactant. The surfactant adsorption on the membranes depends on the chemical composition and structure of both the membranes and the surfactants used, as both chemical composition and structure determine the type of interactions controlling this adsorption illustrated on the adsorption isotherms. Distinct different behaviour was exhibited by four types of membranes of the same nominal molecular weight cut-off. The influence of pH and ionic strength was studied also.  相似文献   

2.
The effects of nonionic surfactants having different hydrophilicity and membranes having different hydrophobicity and molecular weight cut-off on the performance of micellar-enhanced ultrafiltration (MEUF) process were examined. A homologous series of polyethyleneglycol (PEG) alkylether having different numbers of methylene groups and ethylene oxide groups was used for nonionic surfactants. Polysulfone membranes and cellulose acetate membranes having different molecular cut-off were used for hydrophobic membranes and hydrophilic membranes, respectively. The concentration of surfactant added to pure water was fixed at the value of 100 times of critical micelle concentration (CMC). The flux through polysulfone membranes decreased remarkably due to adsorption mainly caused by hydrophobic interactions between surfactant and membrane material. The decline of solution flux for cellulose acetate membranes was not as serious as that for polysulfone membranes because of hydrophilic properties of cellulose acetate membranes. The surfactant rejections for the cellulose acetate membranes increased with decreasing membrane pore size and with increasing the hydrophobicity of surfactant. On the other hand the surfactant rejections for polysulfone membranes showed totally different rejection trends with those for cellulose acetate membranes. The surfactant rejections for the polysulfone membranes depend on the strength of hydrophobic interactions between surfactant and membrane material and molecular weight of surfactants.  相似文献   

3.
A theoretical model has been developed that describes ultrafiltration of nonionic surfactants. The model takes into account the fact that surfactants start to aggregate and form micelles at the critical micelle concentration. The model can be used to predict the performance of the membrane if the transport properties inside and at the membrane surface as well as the surfactant association behavior, are known. Three hydrophilic ultrafiltration membranes, made of regenerated cellulose, were used in the investigation. The cut-offs of the membranes were 10,000, 20,000, and 30,000 Da. The surfactant used in the investigation was the nonionic surfactant Triton X-100. The influence of the concentration of surfactant, transmembrane pressure and pure water flux were studied theoretically and experimentally. From the results presented in this work it can be concluded that the calculated values are in good agreement with experimental data.  相似文献   

4.
In this study, we investigate the application of ultrafiltration (UF) for the removal of the cyanotoxin, microcystin-LR, and determine the dominant removal mechanisms. System variables examined included membrane characteristics, feed concentration, water recovery and operating pressure. While adsorption dominated rejection for most UF membranes, at least at early filtration times, both size exclusion and adsorption were important in removing microcystin-LR by the tight thin-film (TF) membranes. Adsorption was primarily attributed to hydrophobic interactions, although hydrogen bonding and physical surface properties such as surface roughness, thickness, and porosity may also play a role. Polysulfone membranes, the most hydrophobic membrane examined, significantly adsorbed microcystin-LR (91%), whereas the more hydrophilic cellulose acetate membranes adsorbed little or no microcystin-LR. The initial feed concentration had a significant influence on the adsorption capacity of TF membranes for microcystin-LR, which could be described based on a linear adsorption isotherm. An increase in water recovery and/or operating pressure led to an increase in the adsorption of microcystin-LR, probably due to increased convective transport. On the other hand, microcystin-LR rejection through size exclusion was reduced for higher water recovery and/or applied pressure.  相似文献   

5.
The prevention of fouling of polysulphone ultrafiltration membranes, used for the purification of natural brown water, was investigated by pretreating the membranes prior to filtration. Polysulfone membranes were pretreated by commercial nonionic surfactants Triton X-100 and Pluronic F108. Specific characterisation techniques, developed by Maartens et al. (1998) and Jucker and Clarke, (1994), were used to determine and compare the effects induced by the adsorption of natural organic matter on the permeability of untreated as well as surfactant treated capillary ultrafiltration membranes. The extent of foulant adsorption and the quality of the resultant permeate solutions were determined by ultraviolet visible-light spectroscopy. The findings of this investigation provides information of importance for the operation of future natural brown water ultrafiltration plants. Copyright 2000 Academic Press.  相似文献   

6.
Adsorption of surfactants on solids plays an important role in industrial operations such as separation, lubrication, flotation, dispersion, chemical mechanical polishing, and enhanced oil recovery. In this work, adsorption of a typical biodegradable nonionic surfactant, n-dodecyl-beta-d-maltoside, on solids was studied to explore its potential applications. Even though it is a nonionic surfactant, significant pH-dependence was revealed for the adsorption on alumina in the range from pH 4 to 7. The adsorption density was found to be proportional to the concentration of surface AlOH group among Al(OH(2))(+) and AlO(-) groups. The equilibriums among the surface species are governed by pH through surface ionization reactions. The surface AlOH group evidently determines the formation of hydrogen bonding between the surfactant molecules and the solid surface and thus the adsorption. Similar correlation was also found in the case of hematite. The results help to understand the mechanism of adsorption of sugar-based surfactant on solids.  相似文献   

7.
Micellar-enhanced ultrafiltration (MEUF) process was explored for obtaining pure water from an aqueous solution containing small amount of trihalomethanes (THMs). A homologous series of polyethylene glycol alkylether was used as nonionic surfactant. To understand effects of membrane hydrophilicity on the performance of MEUF process, membranes for the ultrafiltration were prepared from polysulfone blends containing various amount of a hydrophilic copolymer, poly(1-vinylpyrrolidone-co-acrylonitrile) (P(VP-AN)). An increase in the permeate flux was observed with an increase of the membrane hydrophilicity. The performance of MEUF process in removing THM and surfactant was shown to depend on the membrane characteristics, surfactant characteristics, and operating pressure. The rejections of THM and surfactant were increased with increasing hydrophobicity of surfactant and hydrophilicity of membrane. The rejections of THM examined with hydrophilic membranes were increased with increasing operating pressure, while those examined with hydrophobic membranes were decreased with increasing operating pressure. THM included in water could be removed up to 99% via MEUF process. The performance of MEUF examined with hydrophilic membranes could be explained with the rejection of micelles containing THM, while that examined with hydrophobic membranes could be explained with hydrophobic interactions between surfactant and membrane materials.  相似文献   

8.
Fouling of nanofiltration membranes is studied during filtration of aqueous surfactant solutions under different conditions. To this purpose, four typical nanofiltration membranes (Desal51HL, NF270, NTR7450 and NFPES10) and three typical surfactants (nonionic neodol, anionic SDBS and cationic cetrimide) are selected. Fouling is studied as a function of the surfactant concentration, with and without addition of an electrolyte (NaCl), at different pH and when filtering a mixture of surfactants. Adsorption experiments and hydrophobicity measurements (to study the orientation of the surfactants on the membrane surface) are also performed under the different conditions. The least membrane fouling is found for the anionic surfactant SDBS, while for the cationic surfactant cetrimide very low relative fluxes are observed. Neodol shows an intermediate degree of fouling. Both hydrophobic and electrostatic interactions (in the case of ionic surfactants) between the membrane surface and the surfactant explain the degree of adsorption and hence fouling, as membrane fouling is correlated with the amount of adsorbed surfactant. The difference between cetrimide and SDBS becomes especially visible when changing the pH: increasing the pH leads not only to an opposite orientation of the adsorbed surfactants, but also to an opposite trend in adsorbed amount and membrane fouling. This study permits selection of an optimal nanofiltration membrane to recycle wastewater containing surfactants in the carwash industry. The optimal choice would be a hydrophilic membrane with a low molecular weight cut-off and a small negative surface charge at neutral pH. Cationic surfactants in the wastewater should also be avoided as much as possible.  相似文献   

9.
Although an amount of research has reported that a flux minimum occurs at the isoionic/isoelectric points (pH 4.6-5.0) in the absence of salts in the ultrafiltration of bovine serum albumin (BSA), the real mechanism remains incompletely understood due to the lack of additional techniques in real time to detect the properties of deposited BSA (gel) layers formed during ultrafiltration (UF). An ultrasonic technique was developed as an analytical noninvasive tool to in situ investigate the properties of deposited BSA layers at pH 4.9 (isoionic or isoelectric point, IEP) and 6.9 during crossflow ultrafiltration. The membrane was a polysulfone (PSf) UF membrane with molecular weight cut-off (MWCO) 35 kDa. The feed used was 0.5 g/l BSA solution. Results show good correspondence between the ultrasonic signal responses and the development of BSA gel layers on the membranes. The deposit is thicker at pH 6.9 than at pH 4.9. However, the deposited gel layers are more compressible at pH 4.9 than at pH 6.9. The flux decline is mainly controlled by the density (packing) of the deposit layer. At pH 6.9, protein mainly deposits on the membrane surface. Around the isoelectric point, protein absorbs within and on the membranes. A functional relationship between acoustic signals and fouling resistance exists. The fouling resistance is mainly attributed to pore blocking or pore constriction.  相似文献   

10.
Streaming potential measurement of ultrafiltration (UF) membranes have been realised a new design. This new design is more convenient to determine the streaming potential on a function of the pressure for all kinds of modules (planar, hollow fiber.h.). The effects of pH, ionic strength and size of pores have been studied. Isoelectric points of different materials (polyethersulfone, celloulse acetate, cellulose triacetate and polysulfone membranes) have been experimentally determined from ν variations with pH at a given ionic are, respectively, 3.1, 4.2, 3.4 and 0.5. The study of the charge organic membranes studied has been shown that adsorbing ions are those of water itself. Then the surface charge of the membrane is a dependent on the pH and at the isoelectric point, the charge density and the streaming potential vanished. The polyethersulfone membrane surface has been modified with TX100 adsorption and the modification observed with our design compared to contact angle and permeabilities measurements. The orientation angle of the surfactant at the membrane surface is obtained: θ=5°, and shows that a flat adsorption occurs. The impact of membranes cleaning procedures have been studied in term of permeability completed by streaming potential measurements. It appeared clearly that streaming potential is a useful tool for the control of cleaning procedures.  相似文献   

11.
Surface porosities of Amicon XM100A and XM300 membranes have been measured by electron microscopy and found to be less than 1 per cent. From the measured pore size distributions it is deduced that 50 per cent of the solvent flow is through 20 to 25 per cent of the pores.The conventional model for concentration polarisation in ultrafiltration (UF), which assumes a homogeneously permeable membrane surface, has been modified to account for regions of differing permeability. An effective free area correction factor (≤ 1.0) has been introduced to allow for the effect of membrane surface properties on gel-polarised UF flux.Ultrafiltration experiments with protein solutions and membranes with a range of water fluxes confirm that gel-polarised UF flux is dependent on membrane permeability and surface properties. Effective free area correction factors vary from about 0.4 to 1.0 with values < 1.0 obtained for membranes with water fluxes typically < 150 1/m2 hr at 100 kPaSupport for the effective free area concept in UF is provided by an analogy between a gel-polarised UF membrane and a composite reverse osmosis membrane. In both cases the magnitude of the upper ‘controlling’ resistance may be influenced by the pore size and spacing of the lower supporting structure.  相似文献   

12.
Highly fouling-resistant ultrafiltration (UF) membranes were synthesized by heterogeneous photograft copolymerization of two water-soluble monomers, poly(ethylene glycol) methacrylate (PEGMA) and N,N-dimethyl-N-(2-methacryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPE), with and without cross-linker monomer N,N'-methylene bisacrylamide (MBAA), onto a polyethersulfone (PES) UF membrane. The characteristics, the stability, and the UF separation performance of the resulting composite membranes were evaluated in detail. The membranes were characterized with respect to membrane chemistry (by ATR-IR spectroscopy and elemental analysis), surface wettability (by contact angle), surface charge (by zeta potential), surface morphology (by scanning electron microscopy), and pure water permeability and rejection of macromolecular test substances (including the "cutoff" value). The surface chemistry and wettability of the composite membranes did not change after incubating in sodium hypochlorite solution (typically used for cleaning UF membranes) for a period of 8 days. Changes in water permeability after static contact with solutions of a model protein (myoglobin) were used as a measure of fouling resistance, and the results suggest that PEGMA- and SPE-based composite membranes at a sufficient degree of graft modification showed much higher adsorptive fouling resistance than unmodified PES membranes of similar or larger nominal cutoff. This was confirmed in UF experiments with myoglobin solutions. Similar results, namely, a very much improved fouling resistance due to the grafted thin polymer hydrogel layer, were also obtained in the UF evaluation using humic acid as another strong foulant. In some cases, the addition of the cross-linker during modification could improve both permeate flux and solute rejection during UF. Overall, composite membranes prepared with an "old generation" nonfouling material, PEGMA, showed better performance than composite membranes prepared with a "new generation" one, the zwitterionic SPE.  相似文献   

13.
Experimental data on surface tension available from the literature and generated in the present study are analyzed to estimate the applicability of adsorption models, based on the Frumkin equation, to nonionic and ionic surfactants and their mixtures. Optimization programs based on the least-squares method in media of Delphi V and Pascal VII are used. The effect of interactions between the adsorbed species on surface tension is considered in all cases. The results are compared to those obtained with the simpler Szyszkowski equation, employed in numerous studies of nonionic surfactants, when interactions are neglected. Cases where the Frumkin model can be successfully employed with ionic surfactants and mixtures are presented and the conditions of its applicability are analyzed. Related characteristic quantities (maximum adsorption, standard free energy of surfactant adsorption, energy of interaction between adsorbed species, standard free energy of counterion adsorption, degree of coverage by surfactant/counterion associates) are established as a function of: The properties of an adsorption layer from a mixture of nonionic and ionic surface-active species are compared to those of the single surfactants.  相似文献   

14.
Micellar-enhanced ultrafiltration is a separation technique which can be used to remove metal ions or dissolved organics from water. Metal ions bind to the surface of negatively charged micelles of an anionic surfactant while organic solutes tend to dissolve or solubilized within the micelles. The mixture is then forced through an ultrafiltration membrane with pore sizes small enough to block passage of the micelles and associated metal ions and/or dissolved organics. Monomeric or unassociated surfactant passes through the membrane and does not contribute to the separation. This paper considers advantages of addition of small concentrations of nonionic surfactant to an anionic surfactant; the resulting anionic-nonionic mixed micelles exhibit negative deviation from ideality of mixing which leads to a smaller fraction of the surfactant being present as monomer and a subsequently larger fraction present in the micellar form. The addition of nonionic surfactant improved the separation of divalent zinc substantially at total concentrations above the critical micelle concentration (cmc) of the anionic surfactant. Both zinc and tert-butylphenol (a nonionic organic solute) show unexpected rejection at surfactant concentrations moderately below the cmc, where micelles are absent. This is considered as due to a higher surfactant concentration in the gel layer adjacent to the membrane where micelles are present. Reduction of this rejection at lower transmembrane pressure drops supports this mechanism. Some rejection of zinc was observed in the absence of surfactant but not of tert-butylphenol, indicating an additional effect of membrane charge for ionic solutes. Copyright 1999 Academic Press.  相似文献   

15.
A range of experiments were performed on the dead-end ultrafiltration (UF) of poly(ethylene glycol) (PEG) of different molecular weights. Deviations from a linear dependence of the filtration rate with the applied membrane pressure difference were found. It is shown that these deviations are not caused by an osmotic pressure influence but determined by the reversible adsorption of PEG molecules inside the pores of the ultrafiltration membranes used. A theoretical model of the process is suggested, which describes the reversible adsorption inside the membrane pores and the corresponding reduction of the filtration velocity. Comparison of the theory predictions with experimental data on the ultrafiltration of PEG shows a good agreement between the theoretical predictions and experimental data. A theory is presented for calculation of the PEG rejection coefficient in the case of ultrafiltration.  相似文献   

16.
Reports of endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) have raised substantial concern among important potable drinking water and reclaimed wastewater quality issues. Our study investigates the removal of EDC/PPCPs of 52 compounds having different physico-chemical properties (e.g., size, hydrophobicity, and polarity) by nanofiltration (NF) and ultrafiltration (UF) membranes using a dead-end stirred-cell filtration system. EDC/PPCPs were applied to the membrane in one model water and three natural waters. Experiments were performed at environmentally relevant initial EDC/PPCP concentrations ranging typically from 2 to <250 ng/L. EDC/PPCP retention was quantified by liquid and gas chromatography with mass spectroscopy–mass spectroscopy. A general separation trend due to hydrophobic adsorption as a function of octanol–water partition coefficient was observed between the hydrophobic compounds and porous hydrophobic membrane during the membrane filtration in unequilibrium conditions. The results showed that the NF membrane retained many EDC/PPCPs due to both hydrophobic adsorption and size exclusion, while the UF membrane retained typically hydrophobic EDC/PPCPs due mainly to hydrophobic adsorption. However, the transport phenomenon associated with adsorption may depend on water chemistry conditions and membrane material.  相似文献   

17.
Neutron reflectivity, NR, and surface tension have been used to study the adsorption at the air-solution interface of mixtures of the dialkyl chain cationic surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) and the nonionic surfactants monododecyl triethylene glycol (C12E3), monododecyl hexaethylene glycol (C12E6), and monododecyl dodecaethylene glycol (C12E12). The adsorption behavior of the surfactant mixtures with solution composition shows a marked departure from ideal mixing that is not consistent with current theories of nonideal mixing. For all three binary surfactant mixtures there is a critical composition below which the surface is totally dominated by the cationic surfactant. The onset of nonionic surfactant adsorption (expressed as a mole fraction of the nonionic surfactant) increases in composition as the ethylene oxide chain length of the nonionic cosurfactant increases from E3 to E12. Furthermore, the variation in the adsorption is strongly correlated with the variation in the phase behavior of the solution that is in equilibrium with the surface. The adsorbed amounts of DHDAB and the nonionic cosurfactants have been used to estimate the monomer concentration that is in equilibrium with the surface and are shown to be in reasonable qualitative agreement with the variation in the mixed critical aggregation concentration (cac).  相似文献   

18.
Adsorption of cationic surfactant dodecylpyridinium bromide and nonionic surfactant Triton X-100 from aqueous solutions on the surface of SiO2 particles is studied at various pH values (3.6, 6.5, and 10). The data on the adsorption are compared with the data on the wetting of quartz plates by solutions of these surfactants. Adsorption of both studied surfactants on the SiO2 surface is greatly dependent on solution pH. The mechanism of adsorption of the cationic surfactant is shown to be changed when passing to the alkaline pH region. Triton X-100 does not demonstrate a substantial change in the adsorption mechanism in the pH range from 3.6 to 10.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 2, 2005, pp. 274–280.Original Russian Text Copyright © 2005 by Kharitonova, Ivanova, Summ.  相似文献   

19.
Cutoff performance of Escherichia coli (E. coli) was studied by three types of polyacrylonitrile (PAN) ultrafiltration (UF) membranes without and with charge groups of sulfonate sodium salt (SSS) and trimethylammonium chloride (TMA). These UF membranes were prepared by phase inversion method in water coagulation bath with various concentrations of dimethylsulfoxide (DMSO) and used for the E. coli cutoff experiments under 2.5 kPa applied pressure. With the increase of the polymer concentration in the DMSO cast solution, the pore size of the molecular size exclusion effect of the resultant UF membrane decreased. For UF experiments of E. coli suspension solution with 107 colony forming unit/unit volume (cfu/ml), the permeability of the bacteria through the membrane was in the range of about 10−3% in PAN homopolymer membranes. It was found that E. coli permeation through copolymer UF membranes with SSS and TMA groups was completely restricted. Difference of the E. coli cutoff performance in these UF membranes was discussed in comparison with membrane filtration properties such as molecular sieve effect, permeation rate of solute and membrane morphology.  相似文献   

20.
Adsorption and interfacial properties of model methyl-capped nonionic surfactants C8E4OMe [C8H17O(C2H4O)4CH3] and C10E4OMe [C10H21O(C2H4O)4CH3] were studied in water and water/ethylene glycol mixtures as well as pure ethylene glycol. Critical micellar concentrations (cmc's), surface tensions, and surface excess were determined using surface tension (ST) and neutron reflection (NR) as a function of solvent type and surfactant tail length. The ST results show a strong dependence on solvent type in terms of cmc. The NR data were analyzed using a single-layer model for the adsorbed surfactant films. Surprisingly, the adsorption parameters obtained in both water and pure ethylene glycol were very similar, and variations in film thickness or area per molecule are negligible in respect of the uncertainties. Similarly, for C10E4OMe, estimates for the free energies of adsorption and micellization show only a weak solvent dependence. These results suggest that for such model nonionic surfactants dilute solution properties are dictated by solvophobicity, which is quite similar for this class of water, glycol, and water-glycol mixtures. More specifically, the nature of the adsorption layer appears to be hardly affected by the type of solvent subphase. The findings highlight the significance of solvophobicity and show that model nonionic surfactants can behave very similarly in hydrogen-bonding glycol solvents and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号