首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetotransport through one or several quasi-one-dimensional rings, in the presence of the Rashba (RSOI) and Dresselhaus (DSOI) terms of the spin–orbit interaction (SOI) and of a magnetic field B, is investigated. The RSOI field and an effective DSOI field are taken as ER=ER(sinγ1er+cosγ1ez) and ED=ED(sinγ2er+cosγ2ez), their strengths are denoted by α and β, respectively. The exact one-electron eigenvalues and eigenfunctions are obtained and used to evaluate the transmission as a function of α, β, and of the angles γ1,γ2. Because the RSOI term couples the electronic orbit (along the θ direction) with the Pauli matrices σz and σr while the DSOI term couples it with σθ, they affect the electronic spin transport through a ring in distinctly different ways. The resulting transmission shows a considerable structure as a function of the angles γ1 or γ2. The same holds for the transmission, versus α or β, with the SOI present only in one arm of the ring and for that through two rings with the same or different radii. Various results of the literature, valid for β=0, are readily recovered. For weak magnetic fields the influence of the Zeeman term on the transmission, assessed by perturbation theory, is negligible.  相似文献   

2.
We have studied the effect of a small amount of Y-site substitution by La or Pr ions on the vortex pinning in the Y–Ba–Cu–O system. (Y1-xLax)–Ba–Cu–O and (Y1-xPrx)–Ba–Cu–O bulks were fabricated by the melt-textured growth, in which x was varied from 0 to 0.01. The critical current density Jc at 77 K is improved in magnetic fields parallel to the c-axis above 2–4.5 T and the corresponding irreversibility field, Hirr, shifts to the higher value in both bulks.  相似文献   

3.
We report measurements of electrical resistivity (ρ), Hall coefficient (RH), magnetization (M) and specific heat (Cp(T)) of high-quality icosahedral Al70.4Pd20.8Mn8.8 phases with different thermal treatment. An improvement in the quasi-crystallinity upon the annealing treatment caused a drastic increase in ρ up to 7000 μΩ cm accompanied by a very small electronic specific heat coefficient γ. The low temperature ρ(T) data has been analyzed in terms of weak localization and electron–electron interaction effects. The Hall resistivity (ρH) is found to be strongly temperature-dependent and varies linearly with the magnetization (M) for the same field and temperature. Magnetization measurement reveals that more conductive samples are more magnetic and vice versa. Magnetic susceptibility (χ) data of all the annealed samples agrees with the Curie–Weiss-like behavior implying the existence of localized moments. The negative Curie–Weiss temperature (θ) indicates strong antiferromagnetic coupling between individual Mn atoms. The magnetic Mn concentration is found to be small, ranging from 1.73×10-4 for the less magnetic sample studied up to 3×10-3 for the more magnetic one. The small electronic specific heat coefficient obtained for all the samples suggests a significant reduction in the electronic density of states (DOS) at the Fermi level (EF) upon thermal annealing treatment.  相似文献   

4.
Baida Lü  Xiangyang Tao  Yiyou Nie 《Optik》2005,116(9):454-458
The focal switch of Hermite–Gaussian beams diffracted at an aperture and subsequently focused by a spherically aberrated lens is studied. Our main attention is focused on the effect of quartic-phase aberrations on the behavior of the focal switch. It is shown that quartic-phase aberrations affect the relative focal shift Δzf, turning position s1,t, and relative transition height Δzsw. Apart from a critical maximum truncation parameter αc,max, there is a critical minimum truncation parameter αc,min. Within the region αc,min<α<αc,max the focal switch can take place, but quartic-phase aberrations give rise to a decrease of αc,max-αc,min in comparison with the aberration-free case.  相似文献   

5.
The equation of motion dM/dtM×B(t) is solved for the case B(t)=jBp(t)+kBe. The field Be is a small static field, typically the earth’s field. The field Bp(t) decays exponentially toward zero with time constant T. This decay is produced by an overdamped switching transient that occurs near the end of the rapid cutoff of the coil current used to polarize the sample. It is assumed that Bp is initially large compared to Be, and that magnetization M is initially along the resultant field B. Exact solutions are obtained numerically for several decay time constants of Bp, and the motion of M is depicted graphically. It is found that for adiabatic passage, the final cone angle β of the precession in field Be is related to the decay time constant of Bp by β=2e−(π/2)ωeT. This is confirmed by measurements of the amplitudes of the ensuing free-precession signals for various decay rates of Bp. Near-perfect adiabatic passage (magnetization aligned within 2° of the earth’s field) can be achieved for time constants T2.6/ωe. For the case of sudden passage, an approximate analytic solution is developed by linearizing the equation of motion in the laboratory frame of reference. For the adiabatic case, an approximate analytic solution is obtained by linearizing the equation of motion in a rotating frame of reference that follows the resultant field B=Bp+Be.  相似文献   

6.
We investigate non-standard neutrino interactions (NSIs) in the Zee–Babu model. The size of NSIs predicted by this model is obtained from a full scan over the parameter space, taking into account constraints from low-energy experiments such as searches for lepton flavor violation (LFV) and the requirement to obtain a viable neutrino mass matrix. The dependence on the scale of new physics as well as on the type of the neutrino mass hierarchy is discussed. We find that NSIs at the source of a future neutrino factory may be at an observable level in the νeντ and/or νμντ channels. In particular, if the doubly charged scalar of the model has a mass in reach of the LHC and if the neutrino mass hierarchy is inverted, a highly predictive scenario is obtained with observable signals at the LHC, in upcoming neutrino oscillation experiments, in LFV processes, and for NSIs at a neutrino factory.  相似文献   

7.
8.
We have successfully consolidated hydrogenation–disproportionation–desorption–recombination (HDDR) processed Nd–Fe–Co–Zr–B–Ga powder by spark plasma sintering (SPS). The field compacted samples were sintered at different temperatures (TS) from 550 to 600 °C with compressive pressure of 80 MPa for 20 min. Microstructural investigations by transmission electron microscopy indicated that the sintered specimen exhibits Nd2Fe14B grains of ~300 nm with Nd-rich grain boundary phase. The optimum magnetic properties of Br: 1.22 T, Hc: 928 kA/m, BHc: 600 kA/m, (BH)max: 210 kJ/m3 were obtained in the sample sintered at 550 °C. The strategy for further improving the coercivity and remanence is discussed based on the microstructure-property relationships.  相似文献   

9.
This study describes a direct measurement of spectroscopic g-factors of photo-generated carriers in InP/ZnS and HgTe/HgxCd1−xTe(S) core–shell nanocrystals. The g-factor of trapped electrons and their spin-lattice versus radiative relaxation ratio (T1/τ) were measured by the use of continuous-wave and time-resolved optically detected magnetic resonance (ODMR) spectroscopy. The g-factors of excitons and donor–hole pairs were derived by the use of field-induced circular-polarized photoluminescence (CP-PL) spectroscopy. The combined information enabled to determine the g-factors of the individual band-edge electrons and holes. The results suggested an increase of the g-factor of the exciton and conduction electron with a decrease of the nanocrystal size.  相似文献   

10.
A family of commuting transfer matrices is shown to be associated to each symmetry transformation of a given Yang-Baxter algebra. This applies in lattices models and field theory.The Yang-Baxter algebra remains unchanged when an arbitrary parameter μl is associated to each lattice site. We generate in this way integrable one-dimensional hamiltonians with long-range couplings and disorder given by the <{;μ1<};. These operators are lattice versions of the non-local charges in sigma models. As a simple example we get a Dzialozhinski-Moriya interaction with an arbitrary coupling per site from the six-vertex model. A similar model with a disordered magnetic field follows too. Their exact solution by an algebraic Bethe ansatz is presented. We derive the excitations spectrum in terms of the density of parameters (μ).As another application, the total spin S2 is computed for a XXZ Heisenberg chain (μl ≡ 0) as a function of the anisotropy Δ (− ∞ < Δ < + ∞).  相似文献   

11.
We have investigated the relation among ρT characteristics, superconductivity, annealing conditions and the crystallinity of polycrystalline (In2O3)1−x–(ZnO)x films. We annealed as-grown amorphous films in air by changing annealing temperature and time. It is found that the films annealed at 200 °C or 300 °C for a time over 0.5 h shows the superconductivity. Transition temperature Tc and the carrier density n are Tc < 3.3 K and n ≈ 1025–1026 m−3, respectively. Investigations for films with x = 0.01 annealed at 200 °C have revealed that the Tc, n and crystallinity depend systematically on annealing time. Further, we consider that there is a suitable annealing time for sharp resistive transition because the transition width becomes wider with longer annealing times. We studied the upper critical magnetic field Hc2(T) for the film with different annealing time. From the slope of dHc2/dT for all films, we have obtained the resistivity ρ dependence of the coherence length ξ(0) at T = 0 K.  相似文献   

12.
Landau-level lifetimes are determined from saturation cyclotron resonance (CR) in wide parabolic wells, quantum wells and bulk PbTe–Pb1−xEuxTe systems. These narrow gap structures exhibit strong band non-parabolicity necessary to terminate the normally equi-spaced Landau-level ladder. It was not possible to saturate the bulk sample, but short lifetimes, of between 1.5 and 8 ps, were obtained for the wide parabolic well and the quantum well, respectively, utilising a multi-level rate equation model. We also report the first pump–probe cyclotron resonance result in an InAs–AlSb quantum structure. The pump–probe experiment provides a direct determination of the lifetime, giving τ=40 ps in this InAs–AlSb sample. This shows good agreement with an 8×8k·p calculation.  相似文献   

13.
We present a phenomenological theory of the homogeneous orbital dynamics of the class of “separable” anisotropic superfluid phases which includes the ABM state generally identified with 3He-A. The theory is developed by analogy with the spin dynamics described in the first paper of this series; the basic variables are the orientation of the Cooper-pair wavefunction (in the ABM phase, the l-vector) and a quantity K which we visualize as the “pseudo-angular momentum” of the Cooper pairs but which must be distinguished, in general, from the total orbital angular momentum of the system. In the ABM case l is the analog of d in the spin dynamics and K of the “superfluid spin” Sp. Important points of difference from the spin case which are taken into account include the fact that a rotation of l without a simultaneous rotation of the normal-component distribution strongly increases the energy of the system (“normal locking”), and that the equilibrium value of K is zero even for finite total angular momentum. The theory does not claim to handle correctly effects associated with any intrinsic angular momentum arising from particle-hole asymmetry, but it is shown that the magnitude of this quantity can be estimated directly from experimental data and is extremely small; also, the Landau damping does not emerge automatically from the theory, but can be put in in an ad hoc way. With these provisos the theory should be valid for all frequencies irrespective of the value of ωτ. (Δ = gap parameter, τ = quasi-particle relaxation time.) It disagrees with all existing phenomenological theories of comparable generality, although the disagreement with that of Volovik and Mineev is confined to the “gapless” region very close to Tc.The phenomenological equations of motion, which are similar in general form to those of the spin dynamics with damping, involve an “orbital susceptibility of the Cooper pairs” χorb(T). We give a possible microscopic definition of the variable K and use it to calculate χorb(T) for a general phase of the “separable” type. The theory is checked by inserting the resulting formula in the phenomenological equations for ωτ 1 and comparing with the results of a fully microscopic calculation based on the collisionless kinetic equation; precise agreement is obtained for both the ABM and the (real) polar phase, showing that the complex nature of the ABM phase and the associated “pair angular momentum” is largely irrelevant to its orbital dynamics. We note also that the phenomenological theory gives a good qualitative picture even when ω Δ(T), e.g., for the flapping mode near Tc. Our theory permits a simple and unified calculation of (1) the Cross-Anderson viscous torque in the overdamped regime, (2) the flapping-mode frequency near zero temperature, (3) orbital effects on the NMR, both at low temperatures and near Tc, (4) the orbit wave spectrum at zero temperature (this requires a generalization to inhomogeneous situations which is possible at T = 0 but probably not elsewhere). We also discuss the possibility of experiments of the Einstein-de Haas type. Generally speaking, our results for any one particular application can be also obtained from some alternative theory, but in the case of orbital and spin relaxation very close to Tc (within the “gapless” region) our predictions, while somewhat tentative and qualitative, appear to disagree with those of all existing theories. We discuss briefly how our approach could be extended to apply to more general phases.  相似文献   

14.
The Karhunen–Loève expansion is applied to scalar signals and the effect of window length (tw), time lag (τ) and embedding dimension (d) is analysed for periodic signals and for signals modeled by the Lorenz equations. For τ≠k/2fi (fi are characteristic frequencies of the signal, k is positive integer), we obtain 2m modes from an m-periodic signal. For a large set of parameters a finite number of modes was not obtained from the Lorenz system. It is further shown that, on the time scale of a minute, the peripheral blood flow signal contains oscillatory modes that occur in pairs thereby confirming that the blood flow through the cardiovascular system is oscillatory. Some of the difficulties of applying Karhunen–Loève expansion to scalar signals are pointed out.  相似文献   

15.
The dynamics of weakly coupled, non-abelian gauge fields at high temperature is non-perturbative if the characteristic momentum scale is of order |k|g2T. Such a situation is typical for the processes of electroweak baryon number violation in the early Universe. Bödeker has derived an effective theory that describes the dynamics of the soft field modes by means of a Langevin equation. This effective theory has been used for lattice calculations so far [G.D. Moore, Nucl. Phys. B568 (2000) 367. Available from: <hep-ph/9810313>; G.D. Moore, Phys. Rev. D62 (2000) 085011. Available from: <hep-ph/0001216>]. In this work we provide a complementary, more analytic approach based on Dyson–Schwinger equations. Using methods known from stochastic quantitation, we recast Bödeker’s Langevin equation in the form of a field theoretic path integral. We introduce gauge ghosts in order to help control possible gauge artefacts that might appear after truncation, and which leads to a BRST symmetric formulation and to corresponding Ward identities. A second set of Ward identities, reflecting the origin of the theory in a stochastic differential equation, is also obtained. Finally, Dyson–Schwinger equations are derived.  相似文献   

16.
To understand the behaviour of irradiated defects and kinetic pathways of micro-structural evolution in Fe–Cr alloys, we use a combination of density functional theory with statistical approaches involving cluster expansions and Monte Carlo simulations. A lowest negative mixing enthalpy is found at 6.25% Cr that is consistent with our DFT prediction of an ordered Fe15Cr structure. At 50% Cr, it is found that the predicted enthalpy of formation is 4 times smaller than that calculated by the CPA approach. Thermodynamic and precipitation properties are then discussed in term of segregation between the Fe15Cr and α-Cr phases and of vacancy-mediated kMC simulation. To cite this article: D. Nguyen-Manh et al., C. R. Physique 9 (2008).  相似文献   

17.
We report on electron transport in growth direction and relaxation mechanisms in δ-doped GaAs-superlattices. In order to investigate pure electron transport, n-type δ–n–i–p–i structures sandwiched between two n+-cladding layers have been investigated, with doping induced barrier heights ΔV smaller than the band gap energy Eg of the host material. An exponential increase of the current is expected with increasing bias due to tunneling through a decreasing barrier. At elevated temperatures, thermally activation over the barriers becomes possible. A simple WKB-model describes the experimental data reasonably well. Moreover, a current step appears in the IV characteristics at a critical field which is clearly below the breakthrough value. Opto-electrical measurements confirm the existence of holes in the structure at fields larger than the critical field. A model is presented which explains the photocurrent and electroluminescence measurements consistently. The key mechanism is based on a few ballistically traveling electrons that can gain enough energy for interband avalanche multiplication.  相似文献   

18.
We study ground states and far-infrared spectra (FIR) of two electrons in four-minima quantum-dot molecule in magnetic field by exact diagonalization. Ground states consist of altering singlet and triplet states, whose frequency, as a function of magnetic field, increases with increasing dot–dot separation. When the Zeeman energy is included, only the two first singlet states remain as ground states. In the FIR spectra, we observe discontinuities due to crossing ground states. Non-circular symmetry induces anticrossings, and also an additional mode above ω+ in the spin-triplet spectrum. In particular, we conclude that electron–electron interactions cause only minor changes to the FIR spectra and deviations from the Kohn modes result from the low-symmetry confinement potential.  相似文献   

19.
We show that the K–K spectrum of IIB string on is described by “twisted chiral” superfields, naturally described in “harmonic superspace”, obtained by taking suitable gauge singlets polynomials of the D3-brane boundary superconformal field theory.To each p-order polynomial is associated a massive K–K short representation with states. The quadratic polynomial corresponds to the “supercurrent multiplet” describing the “massless” bulk graviton multiplet.  相似文献   

20.
Self-diffusion coefficients of Li+ DLi+, PF6 DPF6 and solvent propylene carbonate (PC) DPC in LiPF6−PC solutions were determined at 298 K by the pulse gradient spin echo (PGSE) NMR technique over the salt concentration range of 0.1–3.0 M (M = mol dm– 3). The order of the diffusion coefficients was found to be DLi+ < DPF6 < DPC over the concentration range examined, and they were monotonically decreased with increasing the salt concentration. Haven ratio Λ/ΛNMR, where Λ and ΛNMR represent the ionic conductivity measured electrochemically and that estimated via the Nernst-Einstein equation using the diffusion coefficient, respectively, was evaluated as the measure of the ion–ion interaction in the LiPF6–PC solutions. Though Λ/ΛNMR values for LiPF6-solutions decrease with increasing the salt concentration, they were greater than those for LiBF4–PC solutions over the whole concentration range examined, which indicates that the ion pair formation ability of PF6 ion is weaker than that of the BF4 ion. The smaller value of the ionic conductivity for the highly concentrated LiPF6–PC solution (above 2.0 M) than that of the LiBF4-solutions can be attributed to the more rapidly increased viscosity relative to the LiBF4-solution. Classic molecular dynamics (MD) simulations for the respective LiPF6 and LiBF4-solution of 0.5 and 1.0 M were also carried out based on the effective pair potentials. Diffusion coefficients, ionic conductivity and Haven ratio for these solutions were calculated from MD trajectories, and they qualitatively agree with those evaluated by experiments. Pair correlation functions gLiO(r) (for Li+–O (PC) pair) and gLiPF6(r) (for Li+–PF6 pair) or gLiBF4(r) (for Li+–BF4 pair) revealed that the lithium ion weakly forms the contact ion pairs with PF6, whilst strongly with BF4, which supports the present experimental results. Moreover, the simulation results show that both anions in the contact ion pairs predominantly take the monodentate form, which is in contrast to the multidentate coordination predicted by ab initio calculation in gas phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号