首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batch fermentations of sugar cane bagasse hemicellulosic hydrolysate treated for removing the inhibitors of the fermentation were performed byCandida guilliermondii FTI20037 for xylitol production. The fermentative parameters agitation and aeration rate were studied aiming the maximization of xylitol production from this agroindustrial residue. The maximal xylitol volumetric productivity (0.87 g/L h) and yield (0.67 g/g) were attained at 400/min and 0.45 v.v.m. (KLa 27/h). According to the results, a suitable control of the oxygen input permitting the xylitol formation from sugar cane bagasse hydrolysate is required for the development of an efficient fermentation process for large-scale applications.  相似文献   

2.
A new approach for the utilization of hemicellulosic hydrolysate from sugarcane bagasse is described. This approach consists of using the hydrolysate to dilute the conventional feedstock (sugarcane juice) to the usual sugar concentration (150 g/L) employed for the industrial production of ethanol. The resulting sugar mixture was used as the substrate to evaluate the performance of a continuous reactor incorporating a cell recycle module, operated at several dilution rates. An induced flocculent pentose-fermenting yeast strain was used for this bioconversion. Under the conditions used, the reactor performance was satisfactory at substrate feed rates of 30 g/(L·h) or less, corresponding to an ethanol productivity of about 11.0 g/(L·h) and an overall sugar conversion >95%. These results show real advantages over the existing alternatives for a better exploitation of surplus bagasse to increase industrial alcohol production.  相似文献   

3.
Xanthomonas campestris w.t. was used for production of xanthan gum in fermentations with chestnut flour for the first time. Fermentations were carried out with either chestnut flour or its soluble sugars (33.5%) and starch (53.6%), respectively, at 28°C and 200 rpm at initial pH 7.0 in flasks. The effect of agitation rate (at 200, 400, and 600 rpm) on xanthan gum production was also studied in a 2-L batch reactor. It was found that xanthan production reaches a maximum value of 3.3 g/100 mL at 600 rpm and 28°C at 45 h.  相似文献   

4.
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L−1 of initial sugar concentration was used. Cell yield (Y X/S) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L−1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.  相似文献   

5.
Batch, fed-batch, and semicontinuous fermentation processes were used for the production of xylitol from sugarcane bagasse hemicellulosic hydrolysate. The best results were achieved by the semicontinuous fermentation process: a xylitol yield of 0.79 g/g with an efficiency of 86% and a volumetric productivity of 0.66 g/L/h.  相似文献   

6.
Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 °C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.  相似文献   

7.
The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 °C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L?1 h?1. The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L?1 h?1. The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L?1 h?1.  相似文献   

8.
Dilute-acid hydrolysis pretreatment of sugarcane bagasse resulted in release of 48% (18.4 g/L) of the xylan in the hemicellulose fraction into the hydrolysate as monomeric xylose. In order to enhance the recuperation of this monomer, a post-hydrolysis stage consisted of thermal treatment was carried out. This treatment resulted in an increase in xylose release of 62% (23.5 g/L) of the hemicellulose fraction. Original and post-hydrolysates were concentrated to the same levels of monomeric xylose in the fermentor feed. During the fermentation process, cellular growth was observed to be higher in the post-hydrolysate (3.5 g/L, Y x/s?=?0.075 g cells/g xylose) than in the original hydrolysate (2.9 g/L, Y x/s?=?0.068 g cells/g xylose). The post-treated hydrolysate required less concentration of sugars resulting in a lower concentration of fermentation inhibitors, which were formed primarily in the dilute acid hydrolysis step. Post-hydrolysis step led to a high xylose–xylitol conversion efficiency of 76% (0.7 g xylitol/g xylose) and volumetric productivity of 0.68 g xylitol/L h when compared to 71% (0.65 g xylitol/g xylose and productivity of 0.61 g xylitol/L h) for the original hemicellulosic hydrolysate.  相似文献   

9.
In the present preliminary study, we report results for the biocellulose nanofibres production by Gluconacetobacter xylinus. Production was examined by utilizing different feedstocks of single sugars and sugar mixtures with compositions similar to the acid hydrolyzates of different agriculture residues. Profiles for cell proliferation, sugar consumption, and the subsequent pH changes were thoroughly analyzed. Highest biocellulose production of 5.65 g/L was achieved in fructose medium with total sugar consumption of 95.57%. Moreover, the highest production using sugar mixtures was 5.2 g/L, which was achieved in feedstock with composition identical to the acid hydrolyzate of wheat straws. This represented the highest biocellulose yield of 17.72 g/g sugars compared with 14.77 g/g fructose. The lowest production of 1.1 and 1.75 g/L were obtained in xylose and glucose media, respectively, while sucrose and arabinose media achieved relatively higher production of 4.7 and 4.1 g/L, respectively. Deviation in pH of the fermentation broths from the optimum value of 4–5 generally had marked effect on biocellulose production with single sugars in feedstock. However, the final pH values recorded in the different sugar mixtures were ~3.3–3.4, which had lower effect on production hindrance. Analyzing profiles for sugars' concentrations and cell growth showed that large amount of the metabolized sugars were mainly utilized for bacterial cell growth and maintenance, rather than biocellulose production. This was clearly observed with single sugars of low production, while sugar consumption was rather utilized for biocellulose production with sugar mixtures. Results reported in this study demonstrate that agriculture residues might be used as potential feedstocks for the biocellulose nanofibres production. Not only this represents a renewable source of feedstock, but also might lead to major improvements in production if proper supplements and control were utilized in the fermentation process.  相似文献   

10.
The ethanol production cost in a simultaneous saccharification and fermentation-based bioethanol process is influenced by the requirements for yeast production and for enzymes. The main objective of this study was to evaluate—technically and economically—the influence of these two factors on the production cost. A base case with 5 g/L of baker’s yeast and an initial concentration of water-insoluble solids of 5% resulted in an experimental yield of 85%. When these data were implemented in Aspen Plus, yeast was assumed to be produced from sugars in the hydrolysate, reducing the overall ethanol yield to 69%. The ethanol production cost was 4.80 SEK/L (2.34 US$/gal). When adapted yeast was used at 2 g/L, an experimental yield of 74% was achieved and the estimated ethanol production cost was the same as in the base case. A 50% reduction in enzyme addition resulted in an increased production cost, to 5.06 SEK/L (2.47 US$/gal) owing to reduced ethanol yield.  相似文献   

11.
This study deals with the bioconversion of xylose into xylitol by Candida guilliermondii FTI 20037 using eucalyptus hemicellulosic hydrolysate obtained by acid hydrolysis. The influence of various parameters (ammonium sulfate, rice bran, pH, and xylose concentration) on the production of xylitol was evaluated. The experiments were based on multivariate statistical concepts, with the application of factorial design techniques to identify the most important variables in the process. The levels of these variables were quantified by the response surface methodology, which permitted the establishment of a significant mathematical model with a coefficient determination of R 2=0.92. The best results (xylitol=10.0 g/L, yield factor=0.2 g/g, and productivity=0.1 g/[L·h]) were attained with hydrolysate containing ammonium sulfate (1.1 g/L), rice bran (5.0 g/L), and xylose (initial concentration of 60.0 g/L), after 72 h of fermentation. The pH of fermentation was adjusted to 8.0 and the inoculum level utilized was 3 g/L.  相似文献   

12.
Utilizing all forms of sugars derived from lignocellulosic biomass via various pretreatment and hydrolysis process is a primary criterion for selecting a microorganism to produce biofuels and biochemicals. A broad carbon spectra and potential inhibitors such as furan, phenol compounds and weak acids are two major obstacles that limited the application of dilute-acid hydrolysate of lignocellulosics in lactic acid fermentation. Two strains of bacteria isolated from sour cabbage, S3F4 (Lactobacillus brevis) and XS1T3-4 (Lactobacillus plantrum), exhibited the ability to utilize various sugars present in dilute-acid hydrolysate of biomass. The S3F4 strain also showed strong resistance to potential fermentation inhibitors such as ferulic acid and furfural. Fermentation in flasks by this strain resulted in 39.1 g/l of lactic acid from dilute acid hydrolysates of corncobs that had initial total sugar concentration of 56.9 g/l (xylose, 46.4 g/l; glucose, 4.0 g/l; arabinose, 6.5 g/l). The hydrolysate of corncobs was readily utilized by S3F4 without detoxification, and the lactic acid concentration obtained in this study was higher compared to other reports.  相似文献   

13.
蔗渣水解液及发酵液中糖及糖醇的高效液相色谱分析   总被引:8,自引:0,他引:8  
采用HPLC测蔗渣水解液及发酵液中木糖、木糖醇等。在SpherisorbNH2柱上用乙腈+水(80+20)分离,示差折光检测器检测, 15min内同时分离测定木糖、木糖醇及其它五种糖。线性范围在 0~7.5 g/L,相对偏差小于4.1%。  相似文献   

14.
Xylose reductase (XR) activity was evaluated in extracts of Candida mogii grown in media containing different concentrations of rice straw hydrolysate. Results of X Ractivity were compared to xylitol production and a similar behavior was observed for these parameters. Highest values of specific production and productivity were found for xylose reductase (35 U/g of cell and 0.97 U/[g of cell·h], respectively) and for xylitol (5.63 g/g of cell and 0.13 g/[g of cell·h]) in fermentation conducted in medium containing 49.2 g of xylose/L. The maximum value of XR:XD ratio (1.82) was also calculated under this initial xylose concentration with 60 h of fermentation.  相似文献   

15.
Carob pod: A new substrate for citric acid production by Aspergillus niger   总被引:1,自引:0,他引:1  
The production of citric acid from carob pod extract byA. niger in surface fermentation was investigated. A maximum citric acid concentration (85.5 g/L), citric acid productivity (4.07 g/L/d), specific citric acid production rate (0.18 g/g/d), and specific sugar uptake rate (0.358 g/g/d) was achieved at an initial sugar concentration of 200 g/L, pH of 6.5, and a temperature of 30°C. Other kinetic parameters, namely, citric acid yield, biomass yield, specific biomass production rate, and fermentation efficiency were maximum at pH 6.5, temperature 30°C, and initial sugar concentration 100 g/L. The external addition of methanol into the carob pod extract at a concentration up to 4% (v/v) improved the production of citric acid.  相似文献   

16.
Kinetics of ethanol production from carob pods extract by immobilizedS. cerevisiae cells in static and shake flask fermentation have been investigated. Shake flask fermentation proved to be a better fermentation system for the production of ethanol than static fermentation. The optimum values of ethanol concentration, ethanol productivity, ethanol yield, and fermentation efficiency were obtained at pH range 3.5–6.5 and temperature between 30–35°C. A maximum ethanol concentration (65 g/L), ethanol productivity (8.3 g/Lh), ethanol yield (0.44 g/g), and fermentation efficiency (95%) was achieved at an initial sugar concentration of 200, 150, 100, and 200 g/L, respectively. The highest values of specific ethanol production rate and specific sugar uptake rate were obtained at pH 6.5, temperature 40°C, and initial sugar concentration of 100 g/L. Other kinetic parameters, biomass concentration, biomass yield, and specific biomass production rate were maximum at pH 5.5, temperature 30°C, and initial sugar concentration 150 g/L. Under the same fermentation conditions non-sterilized carob pod extract gave higher ethanol concentration than sterilized medium. In repeated batch fermentations, the immobilizedS. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 5 d.  相似文献   

17.
Effect of environmental factors and carbohydrate on gellan gum production   总被引:3,自引:0,他引:3  
Submerged culture fermentation studies were carried out in batch mode for optimizing the environmental parameters and carbon source requirement by Pseudomonas elodea for the production of gellan gum. The maximum production of gellan gum was obtained with 16-h-old culture and 8% inoculum at 30°C and pH 7.0 after 52 h of incubation (6.0 g/L). Of the various carbon sources tested, 2% sucrose, glucose, and soluble starch yielded considerably high amounts of gellan. Studies on the concentration of various carbohydrates on gellan gum production indicated that the optimum concentration of glucose and starch was 3%, whereas for sucrose it was 4%. The addition of glucose in the medium above 3% had a detrimental effect on gellan yield. The investigation of intermediate two-step addition of glucose under identical conditions of fermentation showed an enhanced production of gellan (8.12 g/L) as compared with the control (6.0 g/L). To optimize the recovery of gellan from fermented broth, different solvents were tested for precipitation of gellan gum. Among the various solvents tested, tetrahydrofuran gave better recovery of gellan (82%) as compared with the conventional solvent isopropanol (49%).  相似文献   

18.
The effect of glucose on xylose-xylitol metabolism in fermentation medium consisting of sugarcane bagasse hydrolysate was evaluated by employing an inoculum of Candida guilliermondii grown in synthetic media containing, as carbon sources, glucose (30 g/L), xylose (30 g/L), or a mixture of glucose (2 g/L) and xylose (30 g/L). The inoculum medium containing glucose promoted a 2.5-fold increase in xylose reductase activity (0.582 IU/mgprot) and a 2-fold increase in xylitol dehydrogenase activity (0.203 IU/mgprot) when compared with an inoculum-grown medium containing only xylose. The improvement in enzyme activities resulted in higher values of xylitol yield (0.56 g/g) and productivity (0.46 g/[L·h]) after 48 h of fermentation.  相似文献   

19.
The influence of other hemicellulosic sugars (arabinose, galactose, mannose, and glucose), oxygen limitation, and initial xylose concentration on the fermentation of xylose to xylitol was in vestigated using experimental design methodology. Oxygen limitation and initial xylose concentration had strong influences on xylitol production by Candida tropicalis ATCC 96745. Under semiaerobic conditions, xylitol yield was highest (0.62 g/g), whereas under aerobic conditions volumetric productivity was highest (0.90g/[L·h]). In the presence of glucose, xylose utilization was strongly repressed and sequential sugar utilization was observed. Ethanol produced from the glucose caused a 50% reduction in xylitol yield when the ethanol con centration exceeded 30 g/L. When complex synthetic hemicellulosic sugars were fermented, glucose was initially consumed followed by a simultaneous uptake of the other sugars. The highest xylitol yield (0.84 g/g) and volumetric productivity (0.49 g/[L·h]) were obtained for substrates containing high arabinose and low glucose and mannose contents.  相似文献   

20.
Chen  Xue-fang  Zhang  Li-quan  Huang  Chao  Xiong  Lian  Li  Hai-long  Wang  Can  Zhao  Cheng  Huang  Qian-lin  Chen  Xin-de 《Applied biochemistry and biotechnology》2019,188(3):585-601

An adsorption resin CX-6 was synthesized and used for acid soluble lignin (ASL) removal from sugarcane bagasse hydrolysate (SCBH). The adsorption conditions of pH value, amount of adsorbent, initial ASL concentration, and temperature on ASL adsorption were discussed. The results showed the adsorption capacity of ASL was negatively affected by increasing temperature, solution pH, and adsorbent dose, and was positively affected by increasing initial concentration. The maximum adsorption capacity of ASL was 135.3 mg/g at initial ASL concentration 6.46 g/L, adsorption temperature 298 K, and pH 1. Thermodynamic study demonstrated that the adsorption process was spontaneous and exothermic. Equilibrium and kinetics experiments were proved to fit the Freundlich isotherm model and pseudo-second-order model well, respectively. Fermentation experiment showed that the SCBH after combined overliming with resin adsorption as fermentation substrate for microbial lipid production by Trichosporon cutaneum and Trichosporon coremiiforme was as better as that of SCBH by combined overliming with active charcoal adsorption, and more efficient than that of SCBH only by overliming. Moreover, the regeneration experiment indicated that the CX-6 resin is easy to regenerate and its recirculated performance is stable. In conclusion, our results provide a promising adsorbent to detoxify lignocellulose hydrolysate for further fermentation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号