首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

New methacrylic monomer having free radical polymerizable methacryloyl group and photocrosslinkable functional group was synthesized by reacting hydroxyl chalcone with methacryloyl chloride. The monomer was homopolymerized in methyl ethyl ketone solvent using benzoyl peroxide as an initiator at 70°C. The prepared homopolymer was characterized by UV, FT‐IR, 1H‐NMR and 13C‐NMR spectra. The molecular weights (Mw and Mn) were estimated by gel permeation chromatography. The thermal stability of the polymer was measured by thermogravimetric analysis. The glass transition temperature of the polymer was determined by differential scanning calorimetry. The photocrosslinking property of the polymer was also studied.  相似文献   

2.
A heat-resistant polybismaleimide was obtained by the thermal polymerization of bis(maleimidophenoxy)- tetrakis(phenoxy)cyclotriphosphazene. The thermal stabilities of the polybismaleimide were evaluated in nitrogen and in air by thermogravimetric analysis. The polybismaleimide was stable to 340°C and has char yield of 70% at 800°C in nitrogen and of 60% at 700°C in air. The monomer bismaleimide was obtained by the reaction of bis(4-aminophenoxy)tetrakis(phenoxy)cyclotriphosphazene with maleic anhydride. The diamine was synthesized by a stepwise reaction of hexachlorocyclotriphosphazene with phenol and 4-nitrophenol to give bis(4-nitrophenoxy)tetrakis(phenoxy)cyclotriphosphazene and reducing the nitro groups. The structure of the cyclotriphosphazenes were characterized using Fourier transform infrared (IR), proton nuclear magnetic resonance (1H-NMR) spectroscopy, and elemental analysis.  相似文献   

3.
Various 4,4′ -bis(N2-[4-(4-aminophenoxy)phenyl]aspartimido)diphenylmethane-type bisaspartimide-diamines have been used as solventless curing agents for epoxy resins. The thermal curing was performed at 170, 190, and 230°C to give a tough brown polymer. Thermogravimetric analysis of the polymer obtained showed thermal stability up to 330°C and char yields of 45% in N2 at 800°C and 12% in air at 700°C. The thermal curing reaction was monitored using FT-IR. The synthesized polymers are useful for making composites, laminates, and adhesives.  相似文献   

4.
Several aromatic dicyanate monomers have been synthesized bearing para-linked strong electron withdrawing groups, such as phenylphosphine oxide, sulfone, and carbonyl. These groups increased the reactivity of the cyanate functional groups and eliminated the need for curing catalysts. However, an undesirable decrease in the processing window between the monomer melting point and the onset of cure was also generally observed. An arylene ether phenyl phosphine oxide system was designed that displayed several attractive characteristics such as a low softening point, a wide processing window, cure with no catalyst, high Tg and high char yield in air, suggesting that these new thermosets might show good fire resistance. The dicyanate ester monomers were synthesized in high yield by reacting various bisphenols with cyanogen bromide in the presence of triethylamine. The high reactivity of the cyanate functional groups required that the cyanation reaction be conducted at temperature below 0°C in order to prevent imidocarbonate side reactions. Proton NMR and FT-IR were used to characterize these monomers. The cyclotrimerization curing process was monitored by the disappearance of the carbon-nitrogen triple bond stretch (2270 cm−1). An optimal cure schedule was determined and the cured polycyanurate networks were characterized by DSC, DMTA, and TGA. Tg values were typically > 250°C and 5% weight loss values were observed by TGA in air above 400°C. Several of the dicyanate monomers with sufficiently large processing windows were cured into single lap shear adhesive bonds onto titanium 6/4 and the measurements are reported herein. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 977–987, 1997  相似文献   

5.
New series of benzoxazine‐based monomers, namely maleimidobenzoxazines, were prepared with hydroxyphenylmaleimide, formalin, and various amines (e.g., aniline, allylamine, and aminophenyl propargyl ether). The structure of the novel monomers was confirmed by IR, 1H NMR, and elemental analysis. The monomers were easily dissolved in many common organic solvents. Differential scanning calorimetry of the novel monomers showed exotherms at different temperature ranges that corresponded to the polymerization regime of benzoxazine and maleimide along with other functionalities such as allyl or propargyl, if any. IR was studied to follow the progress of the curing reaction of maleimidobenzoxazine after various thermal treatments. The thermal cure of the monomers at 250 °C afforded a novel network structure that combined polybenzoxazine and polymaleimide. The dynamic mechanical analyses showed that the storage moduli of the thermosets derived from maleimidobenzoxazine were kept constant up to high temperatures. The glass‐transition temperatures were as high as 241–335 °C. Moreover, thermogravimetric analyses revealed that the thermosets did not show any weight loss up to about 350 °C, with char yields ranging from 62 to 70% at 800 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1424–1435, 2006  相似文献   

6.
A kind of aromatic diamine, 4′, 4″-(2, 2-diphenylethene-1, 1-diyl)dibiphenyl-4-amine (TPEDA), was successfully synthesized via Suzuki coupling reaction. The TPEDA containing nonplanar rigid moieties can be used as epoxy resins curing agent to improve the complex properties of cured composites. The curing kinetics during thermal processing of E51/TPEDA system was investigated by nonisothermal differential scanning calorimeter. The average activation energy (E α), pre-exponential factor (lnA), and reaction order (n) calculated from the Kissinger, the Ozawa, the Friedman and the Flynn–Wall–Ozawa methods were 55.8 kJ mol?1, 9.4 s?1 and 1.1, respectively. By the aid of estimated kinetic parameters, the predicted heat generation vs temperature curves fit well with the experimental data, which supported the validity of the estimated parameters and the applicability of the analysis method used in this work. By the introduction of nonplanar rigid moieties, the cured epoxy resins with TPEDA exhibited a higher glass transition temperature (T g = 258 °C), good thermal stability (≈395 °C at 10 % mass-loss), and high char yield (36.6 % at 700 °C under nitrogen) compared with conventional curing agents.  相似文献   

7.
The NCOCH2(CF2)6CH2OCN fluoromethylene cyanate ester monomer and resin are synthesized and characterized. The monomer is prepared by a large‐scale bench‐top synthesis, characterized by differential scanning calorimetry, infrared, 1H‐, 13C‐, 15N‐, and 19F‐NMR spectroscopies and analyzed for catalytically active impurities. Conversion of the monomer to prepolymer and cured resin is characterized by IR and NMR spectroscopies and kinetically analyzed. Resin properties characterization includes thermal, tensile, dynamic mechanical, dielectric, refractive index, thermodielectric and thermogravimetric stabilities, and water absorption. Relevant property comparisons with the commercial AroCy F cyanate ester resin (6F bisphenol A dycyanate) and a Jeffamine‐bisphenol diglycidyl ether epoxy are made. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 135–150, 1999  相似文献   

8.
Abstract

A new methacrylamide monomer, 4‐methacrylamidophenyl‐2′,3′‐benzostyryl ketone (MPBSK) having a free‐radical polymerizable group and a photocrosslinkable functional group, was synthesized by reacting 4‐(2′,3′‐benzocinnamoyl)aniline with methacryloyl chloride in the presence of triethyl amine. The monomer, MPBSK was polymerized in methyl ethyl ketone (MEK) at 70°C using benzoyl peroxide (BPO) as the initiator. The polymer was characterized by UV, IR, 1H‐NMR, and 13C‐NMR spectroscopy. The polymer was found to be soluble in several polar aprotic solvents and in chlorinated solvents but insoluble in aliphatic and aromatic hydrocarbons and in alcohols. The molecular weight data of the polymer as obtained from gel permeation chromatography suggests a higher tendency for chain termination by disproportionation than dimerization. The glass transition temperature of the polymer was determined by differential scanning calorimetry. Thermogravimetric analysis of the polymer carried out in air reveals that it possesses good thermal stability required of a negative photoresist. The photocrosslinking property of the polymer was investigated by irradiating the polymer solution with UV light in the presence and absence of triplet photosensitizers. The effect of the solvent on the rate of photocrosslinking of the polymer was also studied.  相似文献   

9.
A novel class of fire- and heat-resistant matrix resins has been synthesized by thermal polymerization of ethynyl-substituted aromatic cyclotriphosphazenes. Thermal polymerization of new tris[4-(4′-ethynylbenzanilido)phenoxy]tris(phenoxy) cyclotriphosphazene ( III ) and tris[4-(4′-ethynylphthalimido)phenoxy]tris(phenoxy)cyclotriphosphazene ( VII ) at 250°C for 1–1.5 h gave tough polymers. The thermal stabilities of the polymers were evaluated in nitrogen and in air by thermogravimetric analysis (TGA). The synthesised polymers were stable to 400–410°C and showed char yield of 78–65% at 800°C in nitrogen and of 78–69% at 700°C in air. The ethynyl-substituted polymer precursor ( III ) was synthesised by the reaction of tris(4-aminophenoxy)tris(phenoxy)cyclotriphosphazene ( I ) with 4-ethynylbenzoyl chloride. The polymer precursor ( VII ) was synthesised by a solution condensation of I with 4-ethynylphthalic anhydride followed by in situ thermal cyclodehydration at 150°C. The structure of polymer precursors was characterized using proton nuclear magnetic resonance (1H-NMR), infrared (IR) spectroscopy, and elemental analysis. The curing of polymer precursors was monitored by differential scanning calorimetery (DSC) and IR spectroscopy. The synthesised matrix resins are potential candidates for the development of heat- and fire-resistant fiber-reinforced composites. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
A 2,6‐dimethyl phenol‐dicyclopentadiene novolac (DCPDNO) was synthesized from dicyclopentadiene and 2,6‐dimethyl phenol, and the resultant DCPDNO was reacted with cyanogen bromide into 2,6‐dimethyl phenol‐dicyclopentadiene cyanate ester (DCPDCY). The structures of the novolac and cyanate ester were confirmed with Fourier transform infrared spectroscopy, elemental analysis, mass spectrometry (MS), and nuclear magnetic resonance. For the purpose of increasing the mobility of residual DCPDCY during the final stage of curing and achieving a complete reaction of cyanate groups, a small quantity of a monofunctional cyanate ester, 4‐tert‐butylphenol cyanate ester (4TPCY), was added to DCPDCY to form the cyanate ester copolymer. The synthesized DCPDCY was then cured with 4TPCY at various molar ratios. The thermal properties of the cured cyanate ester resins were studied with dynamic mechanical analysis, dielectric analysis, and thermogravimetric analysis. These data were compared with those of the commercial bisphenol A cyanate ester system. Compared with the bisphenol A cyanate ester system, the cured DCPDCY resins exhibited lower dielectric constants (2.52–2.67 at 1 GHz), dissipation factors (0.0054–0.0087 at 1 GHz), glass‐transition temperatures (261–273 °C), thermal stability (5% degradation temperature at 406–450 °C), thermal expansion coefficients (4.8–5.78 × 10?5/°C before the glass‐transition temperature), and moisture absorption (0.8–1.1%). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 671–681, 2005  相似文献   

11.
Novel fire- and heat-resistant polymers was obtained by the thermal polymerization of various maleimidophenoxy-triphenoxycyclotriphosphazenes. These polymers, in which the cyclic triphosphazene structure is preserved, have thermal stability to 350°C and char yields of 82–78% at 800°C in nitrogen and 78–71% at 700°C in air. Two groups of monomers were synthesized by reacting tris(4-aminophenoxy)-tris(phenoxy)cyclotriphosphazene with maleic anhydride alone or in combination with benzophenonetetracarboxylic or pyromellitic dianhydride. The structures of cyclic phosphazene-trimeric precursors and the polymers were characterized by Fourier-transform infrared, proton nuclear magnetic resonance, and elemental analysis. The thermal stabilities of the polymers were evaluated by thermogravimetric analysis.  相似文献   

12.
The enantiodiscriminating polymerization of racemic cyclodextrin‐complexed N‐methacryloyl‐phenylalanine methyl ester is investigated. 1H NMR spectra of the complexes with methylated β‐cyclodextrin in D2O manifest splittings due to chiral recognition. The different stabilities of the diastereomeric complexes influence the kinetics of the homopolymerization, particularly at 0 °C. An enrichment of the residual N‐methacryloyl‐L ‐phenylalanine methyl ester of 14 % was achieved after 21 h of polymerization.  相似文献   

13.
High-strength fire- and heat-resistant polymers were obtained by the thermally induced melt-polymerization of maleimido-phenoxy cyclotriphosphazenes linked by hexafluoroisopropyliden-ediphthalimide groups. These polymers show good thermal stability and high char yields: 78–80% at 800°C in nitrogen and 60–68% in air at 700°C. Graphite-fabric laminates did not burn in pure oxygen, even at 300°C (LOI = 100%), and were tested for shear, flexural, and tensile strengths. Two monomers were synthesized by reacting tris(4-aminophenoxy)-tris(phenoxy) cyclotriphosphazene with maleic anhydride and hexafluoroisopropylidenediphthalic anhydride. The triamine was synthesized by a stepwise reaction of hexachlorocyclotriphosphazene with phenol and 4-nitrophenol to give tris(4-nitrophenoxy)-tris(phenoxy)cyclotriphosphazene and reducing the nitro groups. The structures of cyclic phosphazene-trimeric precursors and the polymers were characterized by FT-IR, 1H-NMR, 31P-NMR, and mass spectroscopy. The curing behaviors of polymer precursors were evaluated by differential scanning calorimetry and thermogravimetric analyses.  相似文献   

14.
Novel modified cyanate ester (CE) resins with decreased dielectric loss, improved thermal stability, and flame retardancy were developed by copolymerizing CE with hyperbranched phenyl polysiloxane (HBPPSi). HBPPSi was synthesized through the hydrolysis of phenyltrimethoxysilane, and its structure was characterized by 1H‐NMR, 29Si‐NMR, and Fourier transform infrared spectra. The effect of the incorporation of HBPPSi into CE resin on the curing behavior, chemical structure of cured networks, and typical performance of HBPPSi/CE resins were systemically evaluated. It is found that the incorporation of HBPPSi into CE network obviously not only catalyzes the curing of CE, but also changes the chemical structure of resultant networks, and thus results in significantly decreased dielectric loss, improved thermal stability, and flame retardancy as well as water absorption resistance. For example, in the case of the modified CE resin with 10 wt% HBPPSi, its limited oxygen index is about 36.0, about 1.3 times of that of neat CE resin, its char yield at 800°C increases from 31.6 to 35.4 wt%; in addition, its dielectric loss is only about 61% of that of neat CE resin at 1 kHz. All these changes of properties are discussed from the view of the structure–property relationship. The significantly improved integrated properties of CE resin provide a great potential to be used as structural and functional materials for many cutting‐edges fields. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A novel phosphorus‐containing aralkyl novolac (Ar‐DOPO‐N) was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) first with terephthaldicarboxaldehyde and subsequently with phenol. The chemical structures of the synthesized compounds were characterized with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. Ar‐DOPO‐N blended with phenol formaldehyde novolac was used as a curing agent for o‐cresol formaldehyde novolac epoxy, resulting in cured epoxy resins with various phosphorus contents. The epoxy resins exhibited high glass‐transition temperatures (159–177 °C), good thermal stability (>320 °C), and retardation on thermal degradation rates. High char yields and high limited oxygen indices (26–32.5) were observed, indicating the resins' good flame retardance. Using a melamine‐modified phenol formaldehyde novolac to replace phenol formaldehyde novolac in the curing composition further enhanced the cured epoxy resins' glass‐transition temperatures (160–186 °C) and limited oxygen index values (28–33.5). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2329–2339, 2002  相似文献   

16.
Aminophenoxycyclotriphosphazenes have been used as curing agents for epoxy resins. The thermal curing was performed in stages at 120–125 and 175–180°C followed by postcuring at 225°C to give tough brown polymers. The thermal curing reaction was monitored using FTIR and differential scanning calorimetry. Thermogravimetric analysis of the cured resins has shown thermal stability up to 350–340°C. The char yield obtained in nitrogen at 800°C was about 55–42% and in air at 700°C was about 40–32%. Graphite cloth laminates were prepared. The mechanical properties evaluated were found superior to those of commonly used epoxy resin systems. These resins are useful for making fire- and heat-resistant composites, laminates, molded parts, and adhesives.  相似文献   

17.
A fire- and heat-resistant polymer was obtained by the thermal polymerization of bismaleimido-substituted 2,2-bis(anilino)-4,4,6,6-tetrakis-(4-Aminophenoxy)-cyclotriphosphazene. The thermal stabilities of the polymer were evaluated in nitrogen and in air by thermogravimetric analysis. This polymer was stable to 345°C and had char yields of 78% at 800°C in nitrogen and of 71% at 700°C in air. The structures of cyclotriphosphazene precursors and the polymer were characterized using Fourier-transform infrared and proton nuclear magnetic resonance spectroscopy.  相似文献   

18.
This report describes a new route to covalently bonded polymer–graphene nanocomposites and the subsequent enhancement in thermal and mechanical properties of the resultant nanocomposites. At first, the graphite is oxidized by the modified Hummers method followed by functionalization with Octadecylamine (ODA). The ODA functionalized graphite oxides are reacted with methacryloyl chloride to incorporate polymerizable ? C?C? functionality at the nanographene platelet surfaces, which were subsequently employed in in situ polymerization of methylmethacrylate to obtain covalently bonded poly(methyl methacrylate) (PMMA)–graphene nanocomposites. The obtained nanocomposites show significant enhancement in thermal and mechanical properties compared with neat PMMA. Thus, even with 0.5 wt % graphene nanosheets, the Tg increased from 119 °C for neat PMMA to 131 °C for PMMA–graphene nanocomposite, and the respective storage modulus increased from 1.29 to 2 GPa. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4262–4267, 2010  相似文献   

19.
A series of novel ionic liquids based on naphthyl-functionalized imidazolium cation have been prepared. Their structure was characterized by NMR. The thermal stabilities of the prepared liquids were studied by thermal gravimetric analysis. The new ionic liquids containing NTf-2 anion display significantly higher thermal stabilities (>400°C). Anion exchange to PF-6, BF-4, and Br decreases the thermal stabilities of such ionic liquids. Fluorescence and UV–Vis absorption spectroscopy were used to study the spectroscopic properties of the ionic liquids. Compared with common ionic liquids, the described ionic liquids provide robust fluorescence properties and remarkably increased UV–Vis absorption. This research may enrich the field of functionalized ionic liquids and provide a platform for extension of ionic liquid applications.  相似文献   

20.
A novel phosphorus monomer (PDHA) has been synthesized through phenyl dichlorophosphate (PDPC) reacting with 2‐hydroxyethyl acrylate (HEA). The structure of PDHA was characterized by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). A series of UV curable resins were manufactured by blending PDHA with triglycidyl isocyanurate acrylate (TGICA) at different weight ratios. The fire performance was examined by micro‐scale combustion calorimeter (MCC) and limiting oxygen index (LOI). The results obtained from MCC indicated that the addition of PDHA to TGICA reduced the HRR and HRC. In addition, the LOI values varied from 28 to 34. The char residues of the composites were observed by scanning electron microscopy (SEM). Their thermal degradation behavior was investigated by thermogravimetric analysis and real time FTIR analysis (RT‐FTIR). The test results indicated that when the weight ratio of PDHA/TGICA = 1:1, the onset temperature of the composite was highest and the most char residue at 700°C was observed. RT‐FTIR showed that the phosphate group of PDHA first degraded to form poly(phosphoric acid)s at around 300°C, which had the major contribution to form the compact char to protect the sample from further degradation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号