首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
以共沉淀法制备的[Mn0.54Ni0.13Co0.13]1.25CO3为前驱体,配锂焙烧获得了富锂锰基固溶体Li[Li0.2Mn0.54Ni0.13Co0.13]O2,然后分别用柠檬酸、柠檬酸三铵对该材料进行表面预处理。结果表明经柠檬酸(铵)处理后,Li[Li0.2Mn0.54Ni0.13Co0.13]O2中分别有16.37wt%和13.14wt%的锂被化学脱出。充放电测试结果表明,表面处理后的样品首次效率有了较大的提高(由63.5%分别提高到了80.2%和80.7%),0.2C循环40次容量保持率分别由91.43%提高到97.42%和92.72%,1C容量由处理前的149.5 mAh.g-1提高到179.5mAh.g-1和181.5 mAh.g-1,表明处理后材料的循环性能和倍率性能都得到了改善。这主要是由于柠檬酸(铵)处理,预先脱出了Li2MnO3组分中的部分Li2O,并在材料表面生成了类尖晶石结构的材料。  相似文献   

2.
唐勇  廖钦林  郭祥安 《电化学》2013,(4):371-375
采用共沉淀-高温固相烧结法在900oC空气中煅烧,合成了层状复合掺杂型正极材料Li(Ni0.5Co0.2Mn0.3)1-2xTixNbxO2(x=0,0.002,0.005,0.01,0.02).通过扫描电镜(SEM)、X-射线衍射(XRD)和电化学测试等观察与研究掺杂元素对Li(Ni0.5Co0.2Mn0.3)O2的形貌结构和电化学性能的影响.结果表明,适量Ti、Nb掺入Li(Ni0.5Co0.2Mn0.3)O2,降低了材料的阳离子混排程度,且晶胞参数随着掺杂量的增加而增加.与未掺杂材料相比,Ti-Nb复合掺杂的样品具有更好的电性能和高温性能.当x=0.005时,材料的综合性能最好,方型铝壳电池3.0~4.2 V电位区间首次1C放电比容165.9 mAh.g-1,常温循环100周期容量保持率96.5%,55oC循环300周期容量保持率为92.6%,80oC/6 h高温存储后冷却2 h电池厚度膨胀率9.8%.  相似文献   

3.
富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2因具有超过250 mA·h·g-1的可逆比容量和高工作电压(>3.5 V. Li/Li+)以及经济成本低的特点,在便携式电子设备中发挥着重要的作用,也被认为是下一代混合动力汽车(HEV)和电动汽车(EV)的理想动力源,是一种有前途的正极材料。由于富锂锰基正极材料存在低倍率容量、电压衰减严重、初始容量损失大的问题,因此提高电池的容量和寿命是目前研究的重点。为此综述了锂离子电池富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2的储锂机理、制备方法以及改性研究。  相似文献   

4.
针对Li1.2Mn0.54Ni0.13Co0.13O2材料的首次效率过低和倍率性能差的缺陷,系统研究了中性去离子水、弱酸性的硫酸铵和强酸性的磷酸3种不同pH值的溶液处理对Li[Li0.2-Mn0.54Ni0.13Co0.13]O2综合性能的影响.ICP结果表明预处理液的pH值对Li的析出量有显著影响;XRD结果显示处理对材料的体相结构有影响;XPS证实处理对材料表面过渡金属元素的价态没有影响.充放电测试表明,硫酸铵处理后的样品具有最优的电化学性能,首次效率由64.6%提高到85.4%,1 C放电容量从149.5 mA h g?1提高到183.7 mA h g?1,中值电压呈缓和下降趋势.  相似文献   

5.
以化学法合成Li(Ni1/3Co1/3Mn1/3)1-xAlxO2系列正极材料(0≤x≤0.1);用X射线衍射仪、扫描电子显微镜和充放电仪研究系列产物的晶体微观结构、表面形貌以及电化学性能,研究不同Al含量参杂对材料性能的影响。结果表明,合成的材料均属于六方晶系,R3m空间群,保持α-NaFeO2层状结构相;Li(Ni1/3Co1/3Mn1/3)0.95Al0.05O2的首次放电容量166.30 mA·h/g,在2.5~4.5 V区间60次循环后比容量衰竭率为4.43%。通过对比Li(Ni1/3Co1/3Mn1/3)0.95Al0.05O2和Li(Ni1/3Co1/3Mn1/3)O2的电极阻抗,分析它们的电化学循环机理,可知掺杂Al后的正极材料适合大倍率放电。  相似文献   

6.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C包覆层的层状富锂固溶体材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2.通过X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X射线能量散射谱(EDS)方法,研究了Ag/C包覆层对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响.结果表明,Ag/C包覆层的厚度约为25 nm,Ag/C包覆在保持了固溶体材料α-NaFeO2六方层状晶体结构的前提下,显著地改善了Li[Li0.2Mn0.54Ni0.13Co0.13]O2的电化学性能.在2.0-4.8 V(vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30次循环后,Ag/C包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%.循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒的界面膜电阻与电化学反应电阻.  相似文献   

7.
为了改善富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2的循环性能,采用燃烧法合成了正极材料Li1.2Mn0.54-xNi0.13Co0.13ZrxO2(x=0.00,0.01,0.02,0.03,0.06).通过X射线衍射(XRD)和扫描电镜(SEM)对其结构与形貌进行了表征,利用恒电流充放电测试,循环伏安(CV)及电化学交流阻抗谱(EIS)技术对其电化学性能进行测试.结果表明,Li1.2Mn0.54-xNi0.13Co0.13ZrxO2(x=0.00,0.01,0.02,0.03,0.06)正极材料均具有α-NaFeO2型层状结构;在室温,2.0-4.8 V电压范围,以0.1C和1.0C(充放电电流以1.0C=180 mA·g-1计算)倍率充放电进行测试,样品Li1.2Mn0.52Ni0.13Co0.13Zr0.02O2的首次放电比容量分别为280.3和206.4 mAh·g-1.其中,在1.0C倍率下,100次循环后容量保持率由原来的73.2%提高到88.9%;以5.0C倍率充放电进行测试,经50次循环后,掺杂正极材料的放电比容量为76.5 mAh·g-1,而未掺杂材料仅有15.0 mAh·g-1.在50、25和-10°C,2.0C倍率条件下,掺杂正极材料的电化学性能均得到有效改善,其中,在-10°C经过50次循环后正极材料Li1.2Mn0.52Ni0.13Co0.13Zr0.02O2比未掺杂的正极材料相比,其放电比容量提高了61.1%.  相似文献   

8.
杜柯  周伟瑛  胡国荣  彭忠东  蒋庆来 《化学学报》2010,68(14):1391-1398
以LiOH•H2O, Ni2O3, Co3O4和MnO2为原料, 经过机械活化后在空气气氛下经高温烧结, 合成了锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2. 通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征. 结果表明, 900 ℃下烧结10 h后可获得晶粒细小均匀的层状Li[Li0.2Mn0.54Ni0.13Co0.13]O2材料, 并具有良好的电化学性能, 在室温下以60 mA/g的电流充放电, 首次放电比容量可达到248.2 mAh/g, 循环50次后放电比容量为239.4 mAh/g, 容量保持率为96.45%. 测试了该材料的高低温循环性能.  相似文献   

9.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C包覆层的层状富锂固溶体材料Li [Li0.2Mn0.54Ni0.13Co0.13]O2.通过X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X射线能量散射谱(EDS)方法,研究了Ag/C包覆层对Li[Li0.2Mn0.54Ni03Co013]O2电化学性能的影响.结果表明,Ag/C包覆层的厚度约为25 nm,Ag/C包覆在保持了固溶体材料α-NaFeO2六方层状晶体结构的前提下,显著地改善了Li[Li0.0Mn054Ni0.13Co013]O2的电化学性能.在2.0-4.8 V (vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30次循环后,Ag/C包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%.循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li02Mn0.54Ni0.13Co013]O2颗粒的界面膜电阻与电化学反应电阻.  相似文献   

10.
应用以氢氧化物共沉淀为前驱体的高温固相烧结法合成LiNi1/3Mn1/3Co1/3O2正极材料,研究了沉淀温度及烧结过程锂盐投入量对该材料的结构和电化学性能的影响.结果表明,以室温(-20℃)下合成的氢氧化物为前驱体制备的LiNi1/3Mn1/3Co1/3O2具有较好的电化学性能.高温固相烧结会导致部分LiOH损失,因而在合成过程中需加入过量的氢氧化锂,实验表明Li1.08Ni1/3Mn1/3Co1/3O2材料的电化学性能最优.  相似文献   

11.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C 包覆层的层状富锂固溶体材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2. 通过X 射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X 射线能量散射谱(EDS)方法,研究了Ag/C 包覆层对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响. 结果表明,Ag/C 包覆层的厚度约为25 nm,Ag/C 包覆在保持了固溶体材料α-NaFeO2 六方层状晶体结构的前提下,显著地改善了Li[Li0.2Mn0.54Ni0.13Co0.13]O2 的电化学性能. 在2.0-4.8 V(vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30 次循环后,Ag/C 包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%. 循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒的界面膜电阻与电化学反应电阻.  相似文献   

12.
Layered LiNi0.4Co0.2Mn0.4O2, Li[Li0.182Ni0.182Co0.091Mn0.545]O2, Li[Li1/3Mn2/3]O2 powder materials were prepared by rheological phase method. XRD characterization shows that these samples all have analogous structure to LiCoO2. Li[Li0.182Ni0.182Co0.091Mn0.545]O2 can be considered to be the solid solution of LiNi0.4Co0.2Mn0.4O2 and Li[Li1/3Mn2/3]O2. Detailed information from XRD, ex situ XPS measurement and electrochemical analysis of these three materials reveals the origin of the irreversible plateau (4.5 V) of Li[Li0.182Ni0.182Co0.091Mn0.545]O2 electrode. The irreversible oxidation reaction occurred in the first charging above 4.5 V is ascribed to the contribution of Li[Li1/3Mn2/3]O2 component, which maybe extract Li+ from the transition layer in Li[Li1/3Mn2/3]O2 or Li[Li0.182Ni0.182Co0.091Mn0.545]O2 through oxygen release. This step also activates Mn4+ of Li[Li1/3Mn2/3]O2 or Li[Li0.182Ni0.182Co0.091Mn0.545]O2, it can be reversibly reduced/oxidized between Mn4+ and Mn3+ in the subsequent cycles.  相似文献   

13.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li1.0Na0.2Ni0.13Co0.13Mn0.54O2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na0.77MnO2.05新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 mAh·g-1和215.8 mAh·g-1,库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 mAh·g-1和106.2 mAh·g-1。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li2MnO3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni2+、Co3+、Mn4+所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

14.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li_(1.0)Na_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na_(0.77)Mn O_(2.05)新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 m Ah·g~(-1)和215.8 m Ah·g~(-1),库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 m Ah·g~(-1)和106.2 m Ah·g~(-1)。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li_2Mn O_3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni~(2+)、Co~(3+)、Mn~(4+)所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

15.
With an aim to suppress the huge irreversible capacity loss encountered in high capacity layered oxide solid solutions between Li2MnO3 and LiMO2 (M = Mn, Ni, and Co), layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with various V2O5 contents have been investigated. The irreversible capacity loss decreases from 68 mAh/g at 100% Li[Li0.2Mn0.54Ni0.13Co0.13]O2 to 0 mAh/g around 89 wt.% Li[Li0.2Mn0.54Ni0.13Co0.13]O2–11 wt.% V2O5 as the lithium-free V2O5 serves as an insertion host to accommodate the lithium ions that could not be inserted back into the layered lattice after the first charge. The Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with about 10–12 wt.% V2O5 exhibit an attractive discharge capacity of close to 300 mAh/g with little irreversible capacity loss and good cyclability.  相似文献   

16.
Carbon surface-modified Li-excess layered oxide solid solution Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode is fabricated through a liquid phase route using polyvinylpyrrolidone as carbon source. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the crystal structure and the chemical states of elements for Li[Li0.2Mn0.54Ni0.13Co0.13]O2 are kept after carbon surface treatment. The high-resolution transmission electron microscopy demonstrated the existence of very little carbon on the surface and the clear boundary after carbon treatment. The carbon surface-modified sample delivers a discharge capacity of 293.2 mAh?g?1 at C/10 rate (suppose 1 C rate?=?250 mA?g?1) and 191.6 mAh?g?1 at 1 C rate between 2.0 and 4.8 V; the capacity retention rate is ~86 % after 70 cycles at 1 C rate. Superior electrochemical properties can be contributed to the carbon surface modification in these aspects including minimizing nanoparticle aggregation and cell polarization, increasing the electronic conductivity, suppressing the elimination of oxide ion vacancies, as well as suppressing the formation of the thick solid electrolyte interfacial layer. Moreover, the annealing process of carbon surface modification might be able to consume Li2CO3 impurity partly and cause the recrystallization of the surface disordered layer.  相似文献   

17.
Electrodes fabricated with the layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 have been coated with carbon by a thermal evaporation process and characterized. The carbon coating enhances the sample surface conductivity by 40% without degrading the layered oxide. The carbon-coated cathodes exhibit much improved rate capability and cycling performance than the bare cathode. Electrochemical impedance spectroscopy (EIS) data reveal that the improved electrochemical performances of the carbon-coated sample are due to the suppression of the solid-electrolyte interfacial (SEI) layer and faster kinetics of both the lithium-ion diffusion through surface layer and the charge transfer reaction.  相似文献   

18.
Cathode materials Li[CoxMn1−x]O2 for lithium secondary batteries have been prepared by a new route—precursor method of layered double hydroxides (LDHs). In situ high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with mass spectrometry (TG-MS) were used to monitor the structural transformation during the reaction of CoMn LDHs and LiOH·H2O: firstly the layered structure of LDHs transformed to an intermediate phase with spinel structure; then the distortion of the structure occurred with the intercalation of Li+ into the lattice, resulting in the formation of layered Li[CoxMn1−x]O2 with α-NaFeO2 structure. Extended X-ray absorption fine structure (EXAFS) data showed that the Co-O bonding length and the coordination number of Co were close to those of Mn in Li[CoxMn1−x]O2, which indicates that the local environments of the transitional metals are rather similar. X-ray photoelectron spectroscopy (XPS) was used to measure the oxidation state of Co and Mn. The influences of Co/Mn ratio on both the structure and electrochemical property of Li[CoxMn1−x]O2 have been investigated by XRD and electrochemical tests. It has been found that the products synthesized by the precursor method demonstrated a rather stable cycling behavior, with a reversible capacity of 122.5 mAh g−1 for the layered material Li[Co0.80Mn0.20]O2.  相似文献   

19.
为提高锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的首次充放电效率,对固相法合成的该材料进行了酸浸的改性研究。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构、形貌进行了表征。结果表明,Li[Li0.2Ni0.2Mn0.6]O2经过酸处理后,首次放电效率得到了较大的提高,但是放电中值电压明显下降。其中,0.5 mol.L-1的硝酸浸泡5 h的效果最佳,首次放电效率达到了86.7%,同时放电容量达到最大值的循环次数大大减少。酸浸改性的原因被归结于材料表面出现了富锂尖晶石结构Li4Mn5O12相。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号