首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The dianion [RuIr4(CO)15]2- has been obtained by reductive carbonylation of mixtures of Ir4(CO)12 and RuCl3 · χ H2O, and the bis(triphenylphosphine)-iminium salt has been characterized by single-crystal X-ray diffraction techniques. Crystal data: [((C6H5)3P)2N]2[RuIr4(CO)15], space group P1 (Z  2), a  11.425(3), b  14.141(2), c  25.979(5) Å, α  84.55(1), β  83.53(2), γ  80.71(2)°. The mixed-metal cluster has a structure with an elongated trigonal bipyramidal array of metal atoms in which Ru occupies an apical position. The anion is unstable in vacuum or in an N2 atmosphere yielding predominantly another mixed-metal species which is not as yet fully characterized. Upon reexposure to CO, this latter species is converted back to [RuIr4(CO)15]2-, plus additional products.  相似文献   

2.
The reaction of Rh(CO)2acac with triphenylantimony in the presence of cesium benzoate in tetraethylene glycol/dimethyl ether solution resulted in the selective formation of [Rh12Sb(CO)27]3- (66% yield) after 3 h of contact time under ≈400 atm of carbon monixide and hydrogen (CO/H2  1) at 140–160°C. The cluster has been isolated as the [Cs(18-Crown-6)2]+, [(CH3)4]+, [(C2H5)4N]+, (Ph3P)2N]+ and [PhCH2N(C2H5)3]+ salts. The [(C2H5)4N]3 [Rh12Sb(CO)27] complex has been characterized via a complete three-dimensional X-ray diffraction study. The complex crystallizes in the space group R3c with a  23.258(13) Å, c  22.811(4) Å, V  10 686 Å3 and p(calcd.)  2.334 g cm-3 for mol.wt. 2503.66 and Z  6. Diffraction data were collected with an Enraf-Nonius CAD 4 automated diffractometer using graphite-monochromatized Mo-Kα radiation. The structure was solved by direct methods and refined by difference-Fourier and least-squares techniques. All non-hydrogen atoms have been located and refined: final discrepancy indices are Rf  3.5% and Rwf  4.6% for 3011 reflections. The anion's structure consists of twelve rhodium atoms situated at the corners of a distorted icosahedron with contacts of 2.807(1), 2.861(1), 2.874(1), 2.999(1), 3.017(1) and 3.334(1) Å and rhodium—antimony contacts of 2.712(0) Å. Rhodium—rhodium bond distances of 2.807 and 3.017 Å are in the range usually found for these complexes although a distance of 3.334 Å may be longer than expected from bonding interactions. The sum of the covalent radii of antimony and rhodium, 2.80 Å, is intermediate between the two observed RhSb contacts. The anion cluster structure is that of distorted icosahedron. This polyhedron has previously been found in [B12H12]2- but not with transition metal clusters. A comparison between the structures of rhodium carbonyl clusters and boranes shows the occurrence of similar structural features. Applications of bonding theories based on the boranes, such as Wade's rules, to rhodium carbonyl clusters shows the extent in which these rules are obeyed.  相似文献   

3.
The reaction of IrH3(PPh3)2 with p-substituted aryldiazonium salts gives the compounds [IrH2(NHNC6H4R)(PPh3)2]+BF4- at low temperature (-10°C) and the o-metalated complexes [IrH(NHNC6H3R)(PPh3)2]+BF4- (R  F, OCH3) at 40–50°C. The reactions of the o-metalated complexes with CO, PPh3, NaI and HCl have been studied.  相似文献   

4.
The species FeRu3(CO)13(μ-PPH2)2, synthesized from Ru3(CO)12 and Fe(CO)4(Ph2PPPh2),has been characterized both spectroscopically and via a single-crystal X-ray structural analysis. This complex crystallizes in the centrosymmetric triclinic space group P1 [No. 2, Ci1] with a  10.066(3), b  12.899(3), c  17.003(4) Å, α  111.89(2), β  91.02(2), γ  102.00(2)°, V  1992.7(9) Å3, Z  2, ?(obsd)  1.79(2) g cm-3 and ?(calcd)  1.82 cm-3. Diffraction data were collected with a Syntex P21 automated four-circle diffractometer and the structure was refined to RF  6.0% and RWF  3.6% for all 5213 reflections (RF  3.8%, RWF  3.6% for those 4140 reflections with |Fo|> 3σ(|Fo|).The metal atoms define a planar triangulated rhombus, with atoms Ru(1) and Ru(2) at the bridgehead, and Fe(1) and Ru(3) at the acute apices. Fe(1) is linked to four terminal carbonyl ligands and is associated with the heteronuclear bonds Fe(1)Ru(1)  2.861(1) Å and Fe(1)Ru(2)  2.868(1) Å. The ruthenium atoms are each bonded to three terminal carbonyl groups. The retheniumruthenium distances are Ru(1)Ru(2)  3.098(1), Ru(1)Ru(3)  3.147(1), and Ru(2)Ru(3)  3.171(1) Å. The structure is completed by Ph2P bridges across the Ru(1)Ru(3) and Ru(2)(ru(3) vectors (<Ru(1)P(1)Ru(3)  84.89(5)° and <Ru(2)P(2)Ru(3)  85.56(6)°).  相似文献   

5.
The reactions (I) Hg2Cl2(s) + Br2(g) and (II) HgCl2(s) + HgBr2(s) have been investigated by an X-ray method. Both the reactions yield two forms of the mixed halide HgClBr, designated as α-HgClBr and β-HgClBr. The cell parameters of the two are as follows:α-HgClBr: a = 6.196 A?, b = 13.12 A?, c = 4.37 A?, z = 4, ? = 5.91 g/cm3. The powder pattern and cell parameters are similar to that of HgCl2. Therefore it is probable that the chlorine atoms, in the linear halogenHghalogen molecules of HgCl2 structure have been replaced by bromines, and since the radius of the bromine atom is larger than that of chlorine, the lattice is larger in this case.β-HgClBr: a = 6.78 A?, b = 13.175 A?, c = 4.17 A?, z = 4, ? = 5.40. These parameters are the same as those reported in the literature for β-Hg(ClBr)2, and its X-ray powder pattern is similar to HgCl2. Therefore this phase also has linear halogenHghalogen molecules but the distribution of Cl and Br atoms is perhaps random.Heating the products (I) and (II) up to the melting point increases the amount of α phase and decreases the β phase, whereas crystallization increases the β phase. DTA study has supported the X-ray findings.  相似文献   

6.
The Sr2+1?yLa3+yFeO3 system with 0.1 ≦ y ≦ 0.6 has been studied mainly by the Mössbauer effect. The results are discussed referring to the Ca1?xSrxFeO3 system. The following four kinds of electronic phases have been observed: the paramagnetic and the antiferromagnetic average valence phases and the corresponding mixed valence phases. Two kinds of Fe ions coexist, in general, in the mixed valence phases. In the antiferromagnetic mixed valence phase, typically at 4 K, the magnetic hyperfine field and the center shift each takes a wide range of value depending on the composition, while a beautiful correlation is kept between them. The extreme values are close to those expected for Fe3+ and Fe5+. The appropriate chemical formulas are, therefore, Ca1?xSrxFe(3+Δ)+0.5Fe(5?Δ)+0.5O3 and Sr1?yLayFe(3+δ)+(1+y)2Fe(5?δ)+(1?y)2O3.  相似文献   

7.
Bis(cycloocta-1,5-diene)platinum reacts with 2,3,4,5-tetraphenylfulvene to afford the complex [Pt(η2-CH2C5Ph4)(cod)] (cod  C8H12) in which the metal atom is coordinated to the exo-cyclic double bond of the fulvene. Related compounds [Pt(η2-CH2C5Ph4L2] (L  PPh3, PMePh2, PMe2Ph, AsPh3 or CNBut have also been prepared and characterised. Reaction of the complexes [Pt(C2H4)2(L)] (L  P(cyclo-C6H11)3, PPh3 or AsPh3) with 2,3,4,5-tetraphenylfulvene yields the compounds [Pt(C2H4)(η2-CH2C5PH4)(L)]. NMR data for the new species are reported and discussed. 6,6-Diphenylfulvene reacts with [Pt(cod)2] and PPh3 (12 mol ratio) to give the complex [Pt(η2-C5H4CPh2)-(PPh3)2] in which the metal atom is bonded to carbon atoms C(2) and C(3) of the fulvene ring. This was established by an X-ray diffraction study. Crystals are monoclinic, space group P21/n, with Z  4 in a unit cell of dimensions a  13.761(4), b  21.653(13), c  17.395(6) Å, β,  104.46(2)°. The structure has been solved and refined to R  0.064 (R′  0.064) for 3139 independent diffracted intensifies measured at room temperature. The platinum atom is in a trigonal environment formed by the two ligated phosphorus atoms and the CC bond of the fulvene which is elongated to 1.52(3) Å. The c5 fulvene ring is planar, and makes an angle of 108° with the coordination plane around the platinum. In this plane the metal atom is slightly asymmetrically bonded with PtC 2.15(2) and 2.24(2) Å, and PtP 2.280(6) and 2.301(6) Å.  相似文献   

8.
Use of Nd3+, Eu3+, and Gd3+ as local structural probes allows the determination of the rare earth positions in the NaxSr3?2xLnx(PO4)2 (Ln = La to Tb) and KCaLn(PO4)2 phases (Ln = rare earth). Moreover, a common feature of both series is a particularly high splitting of the excitation 6P72 and 6P52 levels of the Gd3+ ions.  相似文献   

9.
The formation of a new compound, the most characteristic IR absorption bands of which appear at 2007 cm-1 and 1956 cm-1, has been in the reaction between Co2(CO)8 and Rh4(CO)12 under carbon monoxide pressure in a hydrocarbon medium. The same compound is also formed either by the reaction of Co2(CO)8 with [Rh(CO)2Cl]2 or by the reaction of Co3Rh(CO)12 with carbon monoxide. The new complex has not been isolated in a pure state, but the formula CoRh(CO)7 is proposed on the basis of the stoichiometry of its formation and its physico-chemical properties. Equilibrium constants and thermo-dynamic parameters for the reaction 2 Co2(CO)8 + Rh4(CO)12  4 CoRh(CO)7 have been estimated. Possible structures for the new complex are discussed on the basis of its IR spectrum.  相似文献   

10.
Chemisorption of Rh4(CO)12 on to a highly divided silica (Aerosil “0” from Degussa), Leads to the transformation: 3 Rh4(CO)12 → 2 Rh6(CO)16 + 4 CO. Such an easy rearrangement of the cluster cage implies mobility of zerovalent rhodium carbonyl fragments on the surface. Carbon monoxide is a very efficient inhibitor of this reaction, and Rh4(CO)12 is stable as such on silica under a CO atmosphere. Both Rh4(CO)12 and Rh6(CO)16 are easily decomposed to small metal particles of higher nuclearity under a water atmosphere and to rhodium(I) dicarbonyl species under oxygen. From the RhI(CO)2 species it is possible to regenate first Rh4(CO)12 and then Rh6(CO)16 by treatment with CO (Pco ? 200 mm Hg) and H2O (PH2O ? 18 mm Hg). The reduction of RhI(CO)2 surface species by water requires a nucleophilic attack to produce an hypothetical [Rh(CO)n]m species which can polymerize to small Rh4 or Rh6 clusters in the presence of CO but which in the absence of CO lead to metal particles of higher nuclearity. Similar results are obtained on alumina.  相似文献   

11.
Rh4(CO)12 anchored on γ-Al2O3 (Rh4(CO)12/Al2O3) has been studied as a catalyst for the hydrogenation of 1,3-trans-pentadiene. Under mild conditions (1 atm H2 and temperatures between 60°C and 80°C) hydrogenation occurs at only one of the double bonds of the diene, and analysis of the products shows that the terminal double bond is preferentially hydrogenated. Hydrogenation of the second double bond of the conjugated diene occurring only after all the 1,3-trans-pentadiene has been consumed. In this respect Rh4(CO)12/Al2O3 behaves like toluene solutions of Rh4(CO)12. Anchoring of Rh4(CO)12 on the solid support gives a catalyst which is less active but more stable than toluene solutions of Rh4(CO)12. The effects of CO and of triphenylphosphine on catalytic activity and on specificity of Rh4(CO)12/Al2O3 have also been investigated and both shown to cause a reduction of the rate of hydrogenation of 1,3-trans-pentadiene.  相似文献   

12.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

13.
The partial substitution of Co by Rh in the [Pb0⋅7Co0.4Sr1.9O3]RS[CoO2]1.8 family has been investigated. By transmission electron microscopy and X-ray powder diffraction, it is shown that the substitution of Rh for Co takes place at the two cobalt sites of the structure but for the low enough Rh contents, this substitution is made preferentially at the level of the CdI2-like layer. Thus, a generic formula [Pb0.7(Co0.4−zRhz)Sr1.9O3]RS[Co1−yRhyO2]b1/b2 (0?y?0.5 and 0?z?0.3) can be proposed for this new family of misfit phase. As observed for the pure misfit cobaltite, the thermoelectric power is also very large, close to +140 μV/K at room temperature. The Rh cation can adopt a mixed valency Rh3+/Rh4+ (4d6/4d5) with low spin states t2g6/t2g5 equivalent to the ones of low spin Co3+/Co4+ (3d6/3d5). The large thermopower observed in the Rh substituted compounds is therefore a direct proof that the coexistence of low spin states t2g6/t2g5 contributes to the thermoelectric power enhancement in these oxides.  相似文献   

14.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

15.
The structural and magnetic properties of the Pr1?xMn1+xO3 perovskites were studied. The increase of x (i.e., PrMn < 1) leads to the decrease of the orthorhombic deformation and of the Néel temperature and, simultaneously, to an increase of the ferromagnetic contribution. The latter effect is explained from the suggested distribution of the cations (Pr3+1?xMn2+x)A(Mn3+1?xMn4+x)O2?3 by the double exchange of Mn3+Mn4+ pairs at the B—sublattice.  相似文献   

16.
The excess molar enthalpies HmE{(1 ? x2 ? x3)Al + x2Bi + x3Ga}(I) have been measured between 725 and 1170 K along the sections (1 ? x2 ? x3)x3 = 13, 1, and 3, and x2x3 = 13, 1, and 3, with a high-temperature Calvet calorimeter using both the direct- and indirect-drop methods of mixing; experimental uncertainty is quoted respectively at 6.7 per cent and 9.9 per cent. The equilibrium temperatures confirmed phase boundaries previously determined by potentiometry, d.t.a., and calculation. Extrapolation of the experimental excess molar enthalpies to the limiting binary alloys {(1 ? x2)Al + x2Bi} allows new values for the excess molar enthalpies of these alloys to be proposed. The excess molar enthalpies of the ternary liquid mixtures can be represented correctly using these new values and Bonnier's equation.  相似文献   

17.
The synthesis and properties of polynuclear complexes of general formulae [M(RIm)(diolefin)x, [M(RIm)(CO)2]x and [M(RIm)(CO)L]x (M  Rh, Ir; RIm  imidazolate, 2-methylimidazolate, 2-benzylbenzimidazolate; L  PPh3 or P(OPh)3) are reported. The crystal structure of the novel complex [Rh(2-MeIm)-(CO)2]4 (2-MeIm  2-methylimidazolate) has been determined by X-ray methods. The crystals are orthorhombic, space group P212121, with Z  4 in a unit cell of dimensions a 19.427(12), b 13.419(8), c 12.346(9) Å. The structure has been solved by combined Patterson and direct methods and refined by full-matrix least-squares to R  0.043 for 937 independent observed reflections. It consists of discrete tetrameric complexes in which each Rh atom is in a nearly cis square planar arrangement, bonded to two carbon atoms of carbonyl groups and to two nitrogen atoms of two 2-methylimidazolate ligands, each of which, acting as an exo-bidentate ligand, bridging two metal atoms, so that the four bridging 2-MeIm ligands and the four Rh atoms form a multiatomic ring.  相似文献   

18.
The distribution of La3+ and Ca2+ over the cation sites in Ca2La8(SiO4)6O2 was determined by single-crystal X-ray diffraction. Ca2La8(SiO4)6O2 has the apatite structure, and all available evidence indicates that the space group is P63m, thus precluding a completely ordered structure. The 6h lattice sites are occupied by La3+. In contrast, the 4f sites are occupied equally by La3+ and Ca2+ ions. Consideration of the properties of the La3+ and Ca2+ ions suggests that this distribution is thermodynamically favored for this composition. A simple Ising model suggests ordered columns. These would not be precluded by space group P63m, if the correlation between adjacent columns were random.  相似文献   

19.
Oxidation of the complexes trans-[M(CNR)2(dppe)2] (A) (M = Mo or W; R = Me, But or CH3C6H4-4; dppe = Ph2PCH2CH2PPh2) with diiodine or silver (I) salts gives the paramagnetic cations trans-[M(CNR)2(dppe)2]+, (M = Mo, R = CH3C6H4-4; M = W, R = But) and trans-[M(CNR)2(dppe)2]2+ (M = Mo, R = Me or CH3C6H4-4; M = W, R = Me or But). Mixtures of products are generally produced when dichlorine or dibromine are the oxidising agents, however pure salts, the seven-coordinate complex cations [MX(CNC6H4CH3-4)2(dppe)2]+ (B, X = Cl or Br) have been isolated. A simple molecular orbital scheme is proposed for complexes (A) and used to discuss their electronic spectra and their oxidation.  相似文献   

20.
The isothermal decomposition of any ternary oxide AxByOz on liberation of n moles of oxygen at a constant pressure is found to be driven by the mixing entropy ΔSm = ?nRln PO2 of the total entropy change ΔS = ΔS° + ΔSm. The stability of AxByOz towards isothermal decomposition into a biphasic solid mixture is derived from the equilibrium condition ΔG1 = 0 as functions of standard changes ΔH° and ΔS°. Assuming ΔS° = 44n and calculating ΔH° in terms of lattice energies U(ABO3) and U(A2O3), the stability of perovskites St(ABO3) = ?log P1O2 (A = La, Sm, Dy; B = Mn, Fe) is given as a function of the ionic radius of the A3+ ion. The calculated stability agrees well with that observed. The effect of electronic entropy change ΔSe on ΔS° is demonstrated for AFeO3 (A = La, Sm, Dy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号