首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
A thermodynamic study of the complexation of Cu2+, Pb2+, Zn2+ and Cd2+ ions with 1 and 2 in acetonitrile has been carried out. The study was conducted in the temperature range 283–308 K using a conductometric technique. The observed molar conductivity, Λ, was found to decrease significantly for mole ratios [L]t/[M]t less than unity in all cases. A model involving 1:1 stoichiometry has been used to analyze the conductivity data. The stability constant, K, for each 1:1 complex was determined from the conductivity data by using a nonlinear least-squares curve fitting procedure. The results show that compound 1 has no peak selectivity for any of the metal cations, while compound 2 selectively associates with Cu2+ and Pb2+. Complexes of 1 have the following stability order Pb2+ > Cu2+ > Zn2+ > Cd2+  and Pb2+ > Cu2+ for the complexes of 2. The ?H° and ?S° values for the complexation process were obtained from the slope and intercept of the Van’t Hoff plots respectively. All ?G° values were negative and were determined from the Gibbs–Helmholtz equation and the significance of these values is discussed.  相似文献   

2.
The complex formation between Zn2+, Cd2+ and Pb2+ ions with macrocyclic ligand, tetrathia12-crown-4 (12S4) was studied in dimethylsulfoxide (DMSO)–nitrobenzene binary mixtures at different temperatures using conductometric and 1H NMR methods. In all cases, 12S4 found to form 1:1 complexes with these cations. The formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the resulting molar conductance- and chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of DMSO in the solvent mixtures. The stability of the resulting M2+-12S4 complexes found to decrease in the order Pb2+ > Cd2+ > Zn2+. The values of ?H°, ?S° and ?G° for complexation reactions were evaluated from the temperature dependence of formation constants via van’t Hoff method. The obtained results revealed that, in all cases, the complexes are enthalpy stabilized, but entropy destabilized and the values of ?H° and ?S° are strongly depend on the nature of medium. There is also a linear relationship between all ΔH° and TΔS° values indicating the existence of entropy–enthalpy compensation in complexation of the three cations and ligand in the solvent systems studied.  相似文献   

3.
The formation and dissociation kinetics of the pentaco-ordinated Cu2+, Ni2+, Co2+ and Zn2+ complexes with 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (4-MeCyclam-14) was studied by pH-stat techniques and spectrophotometrically. The rates of the reactions between 4-MeCyclam-14 and each of the four metal ions, although slower than normal complexations by a factor of 103?104, closely follow the order Cu2+ > Zn2+ > Co2+ > Ni2+, found for the rate of water exchange. This implies that beside water exchange an other constant factor plays an important role in the rate determing step. The dissociation of the pentaco-ordinated 4-MeCyclam-14 complexes is acid catalyzed. The limiting rate for acid dissociation is not reached even in 2.5M HNO3 in the case of Ni(4-MeCyclam-14)2+. From the formation and dissociation rates stability constants have been calculated, which do not show any macrocyclic effect.  相似文献   

4.
《Analytical letters》2012,45(17):3074-3087
Abstract

Insoluble porous solid, macrocyclic 22-membered ring, 1-oxa-6,9,12,15,18-pentaaza-2,22-disilacyclododocosane polysiloxane ligand system has been prepared by the reaction of a macro-silane agent with tetraethylorthosilicate. The macro-silane agent was prepared by the reaction of imino-bis(N-2-aminoethylacetamide) ligand with 3-iodopropyltrimethoxysilane in 1:3 molar ratio. The new prepared polysiloxane system exhibits variable potentials for the extraction of metal ions (Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, and Pb2+) from aqueous solutions. The ligand system shows high capacity to extract silver, lead, and mercury. Chemisorption of the metal ions by the ligand system at the optimum conditions was found in the order Ag + > Pb2+ > Hg2+ > Cu2+ > Ni2+ > Fe3+ > Co2+ > Cd2+ > Zn2+.  相似文献   

5.
A series of acyclic Schiff base podands 14?C19 with lipophilic amide and ester end groups were synthesized in good yield and in a simple way. Their transition metal ions complexation was studied using conductometric method in acetonitrile (AN) at 25 °C. Schiff base podands 14?C16 showed a continuous decrease in the molar conductances in their complexation with Hg2+, Pb2+, Cu2+, Zn2+ and Cd2+ which begins to level off at a mole ratio of 1:1 crown-to-metal indicating the formation of a stable 1:1 complexes. The order of the stability constants of the metal ions studied with the Schiff base podands 14, 15 and 16 is: Hg2+ > Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ag+. Metal ion complexation by acyclic diamide or diester podands involves presumably the oxygen atoms of the carbonyl groups in addition to the nitrogen atoms of the imino groups.  相似文献   

6.
The removal efficiencies of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ from aqueous solution with olive stone activated carbon (OSAC) were investigated in this paper. Central composite design method was used to optimize the preparation of OSAC by chemical activation using potassium hydroxide (KOH) as chemical agent. The optimum conditions obtained were 715°C activation temperature, 2 hours activation time, and 1.53 impregnation ratio. This resulted in removal of 99.25% Cu2+, 94.98% Cd2+, 99.08% Ni2+, 99.33% Pb2+, 99.41% Fe2+, and 99.17% Zn2+, as well as 73.94% OSAC yield. The surface characteristics of the activated carbon (AC) prepared under optimized condition were examined by pore structure analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy. The Brunauer–Emmett–Teller (BET) surface area, total pore volume, and average pore diameter of the prepared activated carbon were 886.72 m2/g, 0.507 cm3/g, and 4.22 nm, respectively. The equilibrium data of the adsorption was well fitted to the Langmuir and the highest value of adsorption capacity (Q) on the OSAC was found for Fe2+ (57.47 mg/g), followed by Pb2+ (22.37 mg/g), Cu2+ (17.83 mg/g), Zn2+ (11.14 mg/g), Ni2+ (8.42 mg/g), and Cd2+ (7.80 mg/g). The prepared OSAC can be used for efficient removal of metals from contaminated wastewater.  相似文献   

7.
Lithium-7 NMR spectroscopy was used to investigate the stoichiometry and stability of a Li+ complex with two new branched amines, 4,7-bis(2-pyridylmethyl)-4,7-diazadecane-1,10-diamine (L1) and 4,8-bis(2-pyridylmethyl)-4,8-diazaundecane-1,11-diamine (L2), in acetonitrile and nitromethane. A competitive 7Li NMR method was also employed to probe the complexation of Mn2+, Zn2+ and Cd2+ ions with L1 and L2 in the same solvent systems. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data with an equation that relates the observed chemical shifts to the formation constant. In both solvents, the stability of the resulting 1:1 complexes was found to vary in the order Cd2+ > Zn2+ > Mn2+ > Li+.  相似文献   

8.
《印度化学会志》2022,99(11):100763
Human health is seriously harmed by the consumption of poor-quality water. Due to high toxicity and water solubility, heavy metals are present in wastewater discharged from numerous industries. In the environmental realm, metal-containing water must be treated before being released. A dendrimer is a superior adsorbent for the removal of heavy metal ions due to its nanostructure and hydrophilic end group. In this work, a novel triazine-based hydroxy-terminated dendrimer up to generation three is designed employing a carbamide core. The dendrimer's structure was explored using FT-IR and 1H NMR studies. Full generation dendrimers UG1.0, UG2.0, and UG3.0 were utilized as an adsorbent for Pb2+, Ni2+, Co2+ and Zn2+ metal ion removal from water in a series of tests. The ability of dendrimers to uptake Pb2+, Ni2+, Co2+ and Zn2+ metal ions was investigated under various pH, time interval and dendrimer generation parameters. The presence of metal in the dendrimer was confirmed by FT-IR studies of dendrimer-metal complexes. The overall results show that Pb2+, Ni2+, Co2+ and Zn2+ metal ions uptake increases with the generation, time, and pH.  相似文献   

9.
The complexation reaction of dibenzopyridino-18-crown-6 (DBPY 18C6) with Co2+, Cu2+, Zn2+, Pb2+, Cd2+, Hg2+, and Ag+ have been studied in DMSO at 25°C by the spectrophotometric method. Murexide was used as a competitive colored ligand. The stoichiometry of metal ion-murexide and metal ions with DBPY18C6 complexes were estimated by mole ratio and continuous variation methods and emphasized by the KINFIT program. The stoichiometry of all the complexes was found to be 1: 1 (metal ion/ligand). The order of stability constants for the obtained metal ion-murexide complexes (1: 1) varies in the order Cu2+ > Cd2+ > Co2+ ∼ Pb2+ > Zn2+ > Ag+ > Hg2+. This trend shows that the transition metal ions clearly obey the Irving-Williams role. For the post-transition metal ions, the ionic radius and soft-hard behavior was the major affects in varying of this order. The dibenzopyridino-18-crown-6 complexes with the used metal ions vary as Ag+ > Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+ > Co2+. The article is published in the original.  相似文献   

10.
Azocrown ethers with sulphur atoms and pyrrole or imidazole residue as a part of macrocycle have been synthesised. Their metal complexation abilities in acetonitrile were studied using UV–vis spectrophotometry. The largest spectral changes were observed for both pyrrole- and imidazole-azothiacrown ethers on complexation with Pb2 + , Cu2 + , Zn2 + , Ni2 + , Co2 +  and Ag+ ions. In the case of alkali and alkaline earth metal ions no spectral changes were found. Preliminary studies of ion-selective membrane electrodes with synthesised ionophores are presented. In the measurement for transition/heavy metal cations, only copper and lead give high responses. X-ray structure of 18-membered pyrrole azothiacrown ether is described.  相似文献   

11.
Dibenzo-18-crown-6 (DBC) was immobilized on crosslinked polyvinyl alcohol (CPVA) microspheres, resulting in polymer-supported crown ether DBC–CPVA. The complexation adsorption behaviors of DBC–CPVA microspheres towards diverse metal ions were investigated. The experimental results show that among alkali metal ions, the complexation adsorption ability of DBC–CPVA for K+ ion is the strongest, and crown ether-metal complex in 1:1 ratio is formed, exhibiting a high adsorption capacity. The adsorption capacities of alkali metal ions on DBC–CPVA are in the order: K+ ? Na+ > LI+ > Rb+ > Cs+. Among several divalent metal ions, DBC–CPVA exhibits stronger adsorption ability towards Zn2+ and Co2+ ions, and a “sandwich”-type complex is formed probably in a molar ratio of 2:1 between the immobilized DBC and Zn2+ ion as well as between the immobilized DBC and Co2+ ion. The adsorption capacities of the several divalent metal ions on DBC–CPVA are in the order: Zn2+ > Co2+ ? Cd2+ > Cu2+ > Ni2+ > Pb2+. The complexation adsorption is exothermic physical physisorption process, and raising temperature leads to the decrease of the adsorption capacity. At the same time, the entropy during the complexation adsorption decreases, so the adsorption process is driven by the decrease of enthalpy.  相似文献   

12.
Abstract

7Lithium NMR measurements were used to determine the stoichiometry and stability of Li+ complexes with 12-crown-4, 15-crown-5 and benzo-15-crown-5 in acetonitrile solution. A competitive 7Li NMR technique was also employed to probe the complexation of Mg2+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+ ions with the same crown ethers. In all cases, the stability of the resulting 1:1 complexes was found to decrease in the order 15-crown-5 > benzo-15-crown-5 > 12-crown-4. Ca2+ and Cd2+ ions formed the most stable complexes in the series.  相似文献   

13.
The complexation reaction between Zn2+, Pb2+, Cd2+ and Tl+ cations by 5,7‐diiodo‐8‐hydroxyquinoline (IQN) was studied in the Dimethylformamide /Acetonitril (DMF‐AN) binary system using square wave polarography technique. The stoichiometry and stability of the complexes were determined by monitoring the shifts in half‐wave or peak potential of the polarographic waves of metal ions against the ligand concentration. The stoichiometry of the complexes was found to be 1:1. The results obtained show that there is an inverse relationship between the formation constant of the complexes and the donor number of solvent base on the Guttmann donocity scale. In all cases the formation constants increased with increasing amounts of AN in these binary systems. The selectivity order for IQN complexes with the cations is Zn2+ > Pb2+ > Cd2+ > Tl+.  相似文献   

14.
A new crown ether carrying two anthryl groups with nitrogen–sulfur donor atom was designed and synthesized by the reaction of the corresponding macrocyclic compound and 9-chloromethyl anthracene. The influence of metal cations such as Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ on the spectroscopic properties of the ligand was investigated in acetonitrile–tetrahydofuran solution (1/1) by means of absorption and emission spectrometry. Absorption spectra show isosbestic points in the spectrophotometric titration of Fe2+, Fe3+, Al3+, Cu2+ and Hg2+. The results of spectrophotometric titration experiments disclosed the complexation stoichiometry and complex stability constant of the novel ligand with Fe2+, Fe3+, Al3+, Cu2+and Hg2+cations. The presence of excess amounts of Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ cations caused an enhancement of anthryl fluorescence. The ligand showed good sensitivity for Zn2+ with respect to other metal cations with linear range and detection limit of 1.4 × 10?7 to 4.1 × 10?6 M and 1.0 × 10?8 M respectively.  相似文献   

15.
A new chemically modified carbon paste electrode by 2,2?-((pyridine-2,6-diylbis(azanylylidene))bis(methanylylidene))diphenol (L) ligand has been made and used as a sensor for determination of trace mercury and cadmium ions with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. Complexation studies of the ligand with Cu2+, Zn2+, Hg2+, Ni2+ and Cd2+ ions by conductometric method in acetonitrile–ethanol mixture at 25°C show that the ML complexes have formed. The formation constants of complexes were calculated from the computer fitting of the molar conductance–mole ratio data, and the stability of the resulting complexes varied in order of Cd2+ > Hg2+ > Cu2+ > Zn2+ > Ni2+. Then a simple and effective chemically modified carbon paste electrode with L was prepared, and the electrochemical properties and applications of the modified electrode were investigated. Under the optimal conditions, the detection limit was 0.0494 μg L?1 and 0.0782 μg L?1 for cadmium and mercury ions, respectively, and the linear range for both metal ions were from 1 to 100 μg L?1. The electrode shows high sensitivity, reproducibility and low cost, and was successfully applied to determination of Cd2+ and Hg2+ ions in water samples with recovery in the range of 97–101%.  相似文献   

16.
Lithium-7 NMR spectroscopy was used to investigate the stoichiometry and stability of a Li+ complex with N1,N2-bis(pyridin-2-ylmethylene)ethane-1,2-diamine (L1), N1,N3-bis(pyridin-2-ylmethylene)propane-1,3-diamine (L2) and N1,N4-bis(pyridin-2-ylmethylene) butane-1,4-diamine (L3) in acetonitrile (AN) and nitromethane (NM) solutions. A competitive 7Li NMR method was also employed to probe the complexation of Mn2+, Cd2+ and Zn2+ ions with L1, L2 and L3 in the same solvents. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation that relates the observed chemical shifts to the formation constant. In both solvents, the stability of the resulting 1:1 complexes were found to vary in the order Zn2+>Cd2+>Mn2+>Li+. In addition, the stability of M–L complexes of M2+ with the Schiff base ligands found to vary in the order M2+–L1 > M2+–L2 > M2+–L3.  相似文献   

17.
Two crown ethers carrying pyrene side arms with nitrogen-sulfur donor atom were designed and synthesized by the reaction of the corresponding macrocyclic compounds and 1-bromomethyl-pyrene. The influence of metal cations such as Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ on the spectroscopic properties of the ligands was investigated in acetonitrile-tetrahydrofuran (1:1) by means of absorption and emission spectrometry. Absorption spectra show isosbestic points in the spectrophotometric titration of Al3+, Zn2+, Fe2+, Ni2+, Cu2+, and Pb2+ with 16-membered crown ether. Similar results were obtained for Al3+, Fe2+, Hg2+, Cu2+ and Pb2+ with 14-membered crown ether. The results of spectrophotometric titration experiments disclosed the complexation stoichiometry and complex stability constants of the novel ligands with these cations. According to spectrofluorimetric titration measurements the 14-membered diazadithia crown ether showed sensitivity for Pb2+ with linear range and detection limit of 1.3 × 10?6 to 5.2 × 10?5 M and 5.2 × 10?7 M, respectively. The 16-membered diazadithia crown ether showed sensitivity for Ni2+ with linear range and detection limit of 1.3 × 10?7 to 5.2 × 10?6 M and 4.1 × 10?8 M, respectively.  相似文献   

18.
In this study, the ion-imprinting method has been integrated to develop a novel composite material for the selective separation of Pb2+ ions. Also, Pb2+ ion binding ability of the organosmectite based inorganic-organic composite incorporation of bicyclic C18 organic compound into smectite layers was conducted to draw a projection its potential use as a solid phase exchanger which is quite selective toward Pb2+ ions. The ion-imprinted nanocomposites were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), swelling tests, and elemental analyses. After that, maximum binding capacity, pH, and equilibrium binding time were also been optimized. In order to show the selectivity of the composite synthesized, non-imprinted composites were also synthesized in absence of Pb2+ ions during polymerization. In this step, Ni2+, Co2+, Al3+, Zn2+, and Cu2+ ions were used as competitors under batch adsorption conditions. The relative selectivity coefficients of imprinted composite were calculated as 28.5, 156.5, 69.3, 24.8 and 131.6 for Pb2+/Co2+, Pb2+/Cu2+, Pb2+/Al3+, Pb2+/Zn2+, Pb2+/Ni2+ binary solutions, respectively. Finally, reusability of the composites was evaluated to show its cost-efficiency by repeating adsorption-desorption experiments ten-times. The adsorption capacity of the imprinted composites did not change significantly whereas that of non-imprinted version reduced dramatically.  相似文献   

19.
制备了两种表面Schiff碱及其Cu2+、Co2+、Ni2+、Zn2+配合物,考察了它们对H2O2分解的催化性能,其活性顺序为:Co2+>Cu2+>Ni2+>Zn2+,且与金属离子氧化还原电位有关。溶液的pH值增加有利于催化反应,有机配体的加入则对反应有所抑制。  相似文献   

20.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+ (aq) + SrL2+ (nb) $ \Leftrightarrow $ ML2+ (nb) + Sr2+ (aq) taking place in the two-phase water–nitrobenzene system (M2+ = Ca2+, Pb2+, Cu2+, Zn2+, Cd2+, $ {\text{UO}}_{2}^{2 + } $ , Mn2+, Co2+, Ni2+; L = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the ML2+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following order: Cd2+ < Ca2+ < Mn2+ < Cu2+, Zn2+ <  $ {\text{UO}}_{2}^{2 + } $ , Co2+ < Ni2+ < Sr2+ < Pb2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号