首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The room temperature magnetic properties and the cation site preferences of NiRu and ZnRu substituted barium hexaferrite BaFe12−x(Ni,Zn)xO19 (0⩽x⩽0.3) were investigated by vibrating sample magnetometry and Mössbauer spectroscopy. (Ni,Zn)Ru substitutions led to a great increase in the saturation magnetization (66.5 Am2/kg) at low concentrations. Mössbauer spectroscopic studies showed that both mixture ions mainly occupy the 4f2 and 2a+4f1 sites. NiRu and ZnRu mixtures showed differences in Ms presumably due to the magnetic nature of divalent ion. Hci could be easily controlled from 381.1 to 37.4 kA/m with Ms enhancement for both substitutions, mainly due to selective occupation of nonmagnetic cations on sublattice sites. The tetravalent Ru4+ ion seems to enhance Ms and to decrease Hci markedly at low substitutions.  相似文献   

2.
Graphite nanosheets (GNs) doped with N, Fe, or Ni were synthesized by pyrolysis of metal tetrapyridinoporphyrazine (MPTpz, M=Fe2+, and Ni2+) and a mixture of MPTpzs in a chemical vapor deposition furnace. The products obtained were characterized by scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy. The magnetic properties of the GNs obtained were investigated at room temperature using a vibrating sample magnetometer with an applied field of −10 000-10 000 Gs. The results show the GNs obtained are terrace-like and ultra-thin, with very high aspect ratio. Fe, Ni and N atoms have been doped to the GNs successfully. There are two types of N atom that are introduced into pure carbon systems: pyrinidic and graphitic N atoms. The GNs obtained exhibit ferromagnetic behavior at room temperature. Sample S1, obtained by pyrolysis of a mixture of MPTpzs (M=Fe2+ and Ni2+), have the highest coercivity force. The saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) values of sample S1 are 24.51 emu g−1, 3.95 emu g−1, and 207.34 Gs, respectively.  相似文献   

3.
A sol-gel combustion method has been successfully employed for the synthesis of Sr-hexaferrite nanomaterials doped with Er3+ and Ni2+ at strontium and iron sites, respectively. The X-ray diffraction analysis confirmed the single magnetoplumbite phase and the crystallite size was found to be in the range of 14-16 nm, suitable for obtaining signal-to-noise ratio in the high density recording media. The magnetic properties such as saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) were calculated from hysteresis loops. Ms, Mr and Hc are observed to increase with the Er-Ni content. The dielectric constant (ε´) and dielectric loss (tan δ) is found to decrease with the increase in frequency and is explained on the basis of Maxwell-Wagner and Koops theory. The decrease in dielectric constant and dielectric loss but increase in saturation magnetization and remanence with Er-Ni content suggests that the materials are suitable for applications in microwave devices and high density recording media .  相似文献   

4.
BaFe12?2x M x Sn x O19 compounds, where M?=?Sn2+, Ni2+ or Zn2+ ions, were synthesized by mechanical milling and partially by citrate precursor methods. Analysis of magneto-crystalline structure has been carried out by Mössbauer spectroscopy. The Sn4+ ions replace Fe3+ ions on 2b and slightly on 2a?+?4f1 sites, Zn2+ ions strongly prefer 4f1 sites, Sn2+ ions prefer 4f1 sites too and Ni2+ ions occupy 4f2 and 12k or 2a sites. The magnetic properties were evaluated by the vibrating sample magnetometry and the thermomagnetic analysis. A large variation of the intrinsic coercivity H c (330 to 78 kA/m) and of temperature coefficient of coercivity of ΔH c? (0.39 to 0.22 kA/m°C) were achieved as a function of the (Zn–Sn) and (Sn–Sn) substitutions, respectively. The Curie temperature T c decreased with the (Ni–Sn) substitution from 447 to 399°C.  相似文献   

5.
CoHoxFe2−xO4 ferrites (x=0.00–0.1) were prepared by the co-precipitation technique and the effect of holmium substitution on the magnetic properties was investigated. X-ray diffraction reveals that the substituted samples show a second phase of HoFeO3 along with the spinel phase. The magnetic properties such as the saturation magnetization (Ms), coercivity (Hc) and remanence (Mr) are obtained from the hysteresis loops. It is observed that the Ms decreases while Hc increases with Ho3+ substitution. The decrease of saturation magnetization is attributed to the weakening of exchange interactions. The coercivity increases with increase of the Ho3+ concentration, which is attributed to the presence of an ultra-thin layer at the grain boundaries that impedes the domain wall motion. Low field AC susceptibility was also measured over the temperature range 300–600 K at the frequency of 200 Hz. It decreases with the increase of temperature following the Curie–Weiss law up to the Curie temperature. Above the Curie temperature it shows paramagnetic behavior. The increase in coercivity suggests that the material can be used for applications in perpendicular recording media.  相似文献   

6.
Alloys of composition Nd10.8Dy0.75Tb0.75Fe79.7−xCoxZr0.8Nb0.8Cu0.4B6.0 (x=0, 3, 6, 9, 12, 15) were prepared by melt spinning at 22 m/s and subsequent annealing. Phase analysis revealed single-phase materials. Magnetic structure and remanence analysis indicated strong exchange coupling between neighboring grains in all samples. The remanence polarization Jr and maximum energy product (BH)max increased first and then decreased with further increasing Co content x although the intrinsic coercivity Hci decreased with increasing x. The increase in remanence polarization Jr by the substitution of Co for Fe is mainly caused by the increase in the saturation polarization Js rather than by the improvement of exchange-coupling interactions. Optimum magnetic properties with Jr=1.041 T, Hci=944.9 kA/m and (BH)max=155.1 kJ/m3 were achieved for x=12 ribbons. The mechanism of magnetic hardening in all samples was of pinning type by analyzing initial magnetization and the dependence on applied magnetizing field of the coercivity and remanence.  相似文献   

7.
The magnetic properties and the phase constitution of barium ferrite powders with Fe/Ba ratios varying from 7 to 15 and heat-treated in the temperature range 1000–1200°C are reported. The results showed that heating temperature was effective in increasing the magnetization (Ms) of the powders for ratios ⩾10. For lower ratios Ms increased initially and then decreased with increasing temperature, presumably due to the formation of BaFe2O4. The coercivity (Hci) presented a maximum for all the compositions and then decreased due to particle growth. In addition, the effect of the milling time on the magnetic properties and powder characteristics was investigated. It was found that 40 h of milling led to having samples with less volume fraction of second phases and that the magnetic properties were also maximized. TEM micrographs show particle sizes varying from 0.1 to 2 μm.  相似文献   

8.
In this study, an examination on the spectral, microstructural, and magnetic characteristics of Eu–Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites (Ba0.5Sr0.5NdxEuxFe12−2xO19 (x = 0.00–0.05) HFs) fabricated by an ultrasonic-assisted approach has been presented. An UZ SONOPULS HD 2070 ultrasonic homogenizer with frequency of 20 kHz and power of 70 W was used. The chemical bonding, structure and the morphology of the products were evaluated by Fourier-Transform Infrared (FT-IR) Spectroscopy, XRD (X-ray diffraction), scanning and transmission electron microscopy and techniques. The textural properties of the prepared nanomaterials were examined by using the Brunauer-Emmett-Teller (BET) method. The magnetic properties were studied using a vibrating sample magnetometer (VSM) at room temperature (RT) and low temperature 10 K. The magnitudes of various magnetic parameters including Ms (saturation magnetization), Mr (remanence) and Hc (coercivity) were estimated and evaluated. The M-H loops revealed the hard ferrimagnetic nature for all products at both temperatures. The Ms and Mr values showed a decreasing tendency with increasing degree of Eu3+ and Nd3+ substitutions whereas Hc values displayed an increasing trend. At RT, Ms, Mr and Hc values lie in the ranges of 63.0–68.8 emu·g−1, 24.6–39.2 emu·g−1 and 2252.4–2782.1 Oe, respectively. At 10 K, the values of Ms, Mr and Hc lie between 87.5–97.1 emu·g−1, 33.5–40.1 emu·g−1 and 2060.6–2417.2 Oe, respectively. The observed magnetic properties make the prepared products promising candidates to be applied in the recording media.  相似文献   

9.
Structure and magnetization of CoFeP films prepared by the electroless deposition were systematically investigated by varying the bath composition and deposition parameters to optimize soft magnetic properties. The cobalt content in the CoFeP films varies from 40.4 to 94.9 wt% by controlling the bath composition. Increase of the metallic ratio FeSO4·7H2O/(CoSO4·7H2O+FeSO4·7H2O) affects the films’ microstructure, which switches from amorphous to crystalline structure. The magnetic properties of CoFeP films reveal that the coercivity (Hc) values range from 80 up to 185 A/m and the saturation magnetization (Ms) from 82 to 580 eum/g depending on the bath composition, deposition parameters and heat-treatment conditions. Increase of Ms and remanent magnetization (Mr) as well as decrease of Hc are observed for the CoFeP films with bath pH, temperature and the metallic molar ratio increasing. It is also found that the Hc is enhanced with the increase of NaH2PO2·H2O concentration. CoFeP films showing good soft magnetic properties with coercivities less than 140 A/m and Ms close to 600 emu/g can be obtained in high pH bath and thereafter heat treatment. The deposit is found to be suitable as soft magnetic materials for core materials.  相似文献   

10.
We focused on obtaining MFe2O4 nanoparticles using ricin oil solution as surfactant and on their structural characterization and magnetic properties. The annealed samples at 500 °C in air for 6 h were analyzed for the crystal phase identification by powder X-ray diffraction using CuKα radiation. The particle size, the chemical composition and the morphology of the calcinated powders were characterized by scanning electron microscopy. All sintered samples contain only one phase, which has a cubic structure with crystallite sizes of 12–21 nm. From the infrared spectra of all samples were observed two strong bands around 600 and 400 cm−1, which correspond to the intrinsic lattice vibrations of octahedral and tetrahedral sites of the spinel structure, respectively, and characteristic vibration for capping agent. The magnetic properties of fine powders were investigated at room temperature by using a vibrating sample magnetometer. The room temperature MH hysteresis loops show ferromagnetic behavior of the calcined samples, with specific saturation magnetization (Ms) values ranging between 11 and 53 emu/g.  相似文献   

11.
The structural analysis of strontium hexaferrites SrFe x O19 (for x?=?12, 11 and 10) and substituted samples Sr0.7Nd0.3Fe12???y Co0.3O19 (for y?=?0.3,1.3 and 2.3) prepared through the citrate precursor method is shown. Nd and Co substitution modifies saturation magnetization (M S ) and increases coercivity (H c ) in samples heat-treated at 1100°C for two hours. Mössbauer analyses show different iron occupancy and the influence of the Fe3?+? content is particularly emphasized. Hematite segregation is observed for some compositions. Samples with low Fe3?+? content show the best magnetic properties with no secondary phase segregation.  相似文献   

12.
Mn-Zn ferrite powders (Mn0.5Zn0.5Fe2O4) were prepared by the nitrate-citrate auto-combustion method and subsequently annealed in air or argon. The effects of heat treatment temperature on crystalline phases formation, microstructure and magnetic properties of Mn-Zn ferrite were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy and vibrating sample magnetometer. Ferrites decomposed to Fe2O3 and Mn2O3 after annealing above 550 °C in air, and had poor magnetic properties. However, Fe2O3 and Mn2O3 were dissolved after ferrites annealing above 1100 °C. Moreover, the 1200 °C annealed sample showed pure ferrite phase, larger saturation magnetization (Ms=48.15 emu g−1) and lower coercivity (Hc=51 Oe) compared with the auto-combusted ferrite powder (Ms=44.32 emu g−1, Hc=70 Oe). The 600 °C air annealed sample had the largest saturation magnetization (Ms=56.37 emu g−1) and the lowest coercivity (Hc=32 Oe) due to the presence of pure ferrite spinel phase, its microstructure and crystalline size.  相似文献   

13.
《Current Applied Physics》2014,14(5):685-687
The effect of the replacement of Fe by Co or B on the thermal stability and soft magnetic properties of the Fe-based amorphous metallic ribbons with Fe(87−xy)CoxTi7Zr6By (x = 10, 20% and y = 8, 10, 12%) produced by melt-spinning technique was investigated. For the melt-spun amorphous ribbons, the values of saturation magnetization and coercivity were observed to range from 107.00 to 152.38 emu/g and from 0.012 to 0.446 Oe, respectively. The thermal properties such as Tg, Tx, and ΔTx were in the range of 796.7–809.6 K, 840.2–853.5 K, and 35.8–54.5 K, respectively. In the Fe–Co–Ti–Zr–B alloys, the Co substitution for Fe improved the soft magnetic properties but decreased the thermal stability. For magnetic properties, the coercivity (Hc) decreased and saturation magnetization (Ms) increased by the addition of Co. However, the supercooled liquid region (ΔTx) decreased by the addition of Co. Meanwhile, the B substitution for Fe had no meaningful change on the thermal stability and soft magnetic properties. The amorphous ribbon of Fe59Co20Ti7Zr6B8 exhibited the best soft magnetic properties such as the low coercivity of 0.025 Oe and the high saturation magnetization of 152.38 emu/g.  相似文献   

14.
M-type hexaferrites with Co2+ and Ni2+ions substituting for Fe3+ ions (Ca0.30Sr0.35La0.35Fe12.0−x(Co0.5Ni0.5)xO19, 0.0 ≤ x ≤ 1.0) were prepared by the traditional solid state method. X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), physical property measurement system-vibrating sample magnetometer (PPMS-VSM) have been employed to study the microstructures and magnetic properties of hexaferrites. XRD patterns showed that the single magnetoplumbite phase is obtained if Co–Ni content (x) ≤ 0.4 and impurity phases are observed in the structure when Co–Ni content (x) ≥ 0.4. FE-SEM micrographs showed that the hexaferrites with hexagonal platelet-like grains is obtained. The saturation magnetization (Ms), remanent magnetization (Mr), Mr/Ms ratio, magneton number (nB), coercivity (Hc), magnetic anisotropy field (Ha) and first anisotropy constant (K1) decrease with increasing Co–Ni content (x) from 0.0 to 1.0. And our reported results with tunable Hc and Mr can be used for recording applications.  相似文献   

15.
Cobalt ferrite (CoFe2O4) nanoparticles embedded in amorphous silica can be synthesized by using tetraethylorthosilicate (TEOS) and metallic nitrates as precursors. A well-established silica matrix network provides nucleation locations for CoFe2O4 nanoparticles, thus confining their growth and aggregation. The structural and magnetic properties show strong dependence on the variation of particle size caused by annealing temperature and CoFe2O4 ratio, resulting in higher crystallization, saturation magnetization Ms and remanent magnetization Mr as the annealing temperature and CoFe2O4 ratio increase. But the variation of coercivity Hc is not in accordance with that of Ms and Mr, indicating that Hc is not determined by the size of CoFe2O4 nanoparticles only. The realization of the adjustable particle sizes and the controllable magnetic properties makes the applicability of CoFe2O4 even more versatile.  相似文献   

16.
Highly Al3+ ion doped nanocrystalline SrFe12−xAlxO19 (0≤x≤12), were prepared by the auto-combustion method and heat treated in air at 1100 °C for 12 h. The phase identification of the powders performed using x-ray diffraction show presence of high-purity hexaferrite phase and absence of any secondary phases. With Al3+ doping, the lattice parameters decrease due to smaller Al3+ ion replacing Fe3+ ions. Morphological analysis performed using transmission electron microscope show growth of needle shaped ferrites with high aspect ratio at Al3+ ion content exceeding x≥2. Al3+ substitution modifies saturation magnetization (MS) and coercivity (HC). The room temperature MS values continuously reduced while HC value increased to a maximum value of 18,100 Oe at x=4, which is an unprecedented increase (∼321%) in the coercivity as compared to pure Sr-Ferrite. However, at higher Al3+ content x>4, a decline in magnetization and coercivity has been observed. The magnetic results indicate that the best results for applications of this ferrite will be obtained with an iron deficiency in the stoichiometric formulation.  相似文献   

17.
Vidyadhar Singh  S. Ram 《哲学杂志》2013,93(11):1401-1414
Ni nanoparticles (Ni-NPs), with diameter (D) ranging 5–30 nm, were synthesized by reducing nickel chloride with NaBH4 in the presence of polymer molecules of poly-vinyl alcohol (PVA) in cold water. Nickel chloride was dispersed in the PVA molecules which stabilized the resulting Ni-NPs. Experiments were carried out with and without PVA to elucidate the effect of PVA molecules on the structural and magnetic properties of Ni-NPs. It was found that both uncoated (uc) and PVA-coated (pc) Ni-NPs exhibit a tetragonal (t) crystal structure, i.e. different from the cubic (fcc) structure of bulk nickel. pc Ni-NPs (paramagnetic in nature) converted to fcc Ni (spherical shape, D ~ 12 nm) on annealing at 573 K in air, exhibiting a saturation magnetization M s = 20.5 emu/g, squareness ratio M r /M s = 0.48 and coercivity H c = 248 Oe, which is higher than the bulk Ni (0.7 Oe). uc Ni-NPs showed little improvement in M s and H c on air annealing. The core–shell structure resulted in a high H c value in stable pc Ni-NPs in air. Electron magnetic resonance revealed exchange interaction between the core and shell, which changes on annealing in air.  相似文献   

18.
Bit patterned media (BPM) recording is a candidate for extremely high density magnetic recording. A micromagnetic model is built up to analyze the phase diagram of the correct-write-in condition in BPM above 2 Tb/in.2 fabricated by lithography or ion irradiation methods. The target of the study is to acquire the relationship between the recording performance and the magnetic properties of the media. The medium includes the polycrystalline grains and grain boundary. In BPM fabricated by lithography with FCT structure, two phase diagrams of the correct-write-in condition are found for the anisotropy angular distribution Δθ, the ratio of tetragonal anisotropy K22 to uniaxial anisotropy K1 and the uniaxial anisotropy distribution ΔK1. In BPM fabricated by ion irradiation methods, two phase diagrams of the correct-write-in condition are analyzed for the ratio of saturation magnetization Ms/Ms, anisotropy field Hk/Hk and the exchange field Hex/Hex in the ion irradiated region and the bit islands.  相似文献   

19.
α-Fe2O3 nanobelts and nanoflakes have been successfully synthesized by oxidation of iron-coated ITO glass in air. The X-ray diffraction, Raman spectrum and scanning electron microscopy are carried out to characterize the nanobelts and nanoflakes. The formation mechanism has been presented. Significantly, the magnetic investigations show that the magnetic properties are strongly shape-dependent. The magnetization measurements of belt-like and flake-like α-Fe2O3 in perpendicular exhibit ferromagnetic feature with the coercivity (Hc) and saturation magnetization (Ms) of 334.5 Oe and 1.35 emu/g, 239.5 Oe and 0.12 emu/g, respectively. For the parallel, belt-like and flake-like α-Fe2O3 also exhibit ferromagnetic feature with the Hc and Ms of 205.5 Oe and 1.44 emu/g, 159.6 Oe and 0.15 emu/g, respectively.  相似文献   

20.
The effects of magnetic layer thickness on film structural and magnetic properties were studied systematically with emphasis on the thermal effects on thin recording media films. X-ray diffraction measurements reveal structural changes as thickness decreases, and the existence of a “Cr enriched phase” associated with the interface. The saturation magnetization Ms decreases with thickness and the thickness of the “dead layer” was found to be ∼23 Å. Systematic measurements of effective anisotropy, coercivity and saturation magnetization as functions of temperature have been carried out. Magnetic viscosity measurements reveal that thermal stability is affected not only by grain sizes but also by anisotropy reduction associated with nanostructure evolution, as the film thickness decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号