首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, a novel compound Bis(2-chloropropyl-N,N-dimethyl-1-ammonium) hexachloridostannate(IV) was synthesized and characterized by; single X-ray diffraction, Hirshfeld surface analysis, differential scanning calorimetric and dielectric measurement. The crystal structure refinement at room temperature reveled that this later belongs to the monoclinic compound with P21/n space group with the following unit cell parameters a = 7.2894(7) Å, b = 12.9351(12) Å, c = 12.2302(13) Å and β = 93.423 (6) °. The structure consists of isolated (SnCl6)2? octahedral anions connected together into layers via hydrogen bonds N–H….Cl between the chlorine atoms of the anions and the hydrogen atoms of the NH groups of the [C5H13NCl]+ cations. Hirschfeld surface analysis has been performed to gain insight into the behavior of these interactions. The differential scanning calorimetry spectrum discloses phase transitions at 367 and 376.7 K. The electrical properties of this compound have been measured in the temperature range 300–420 K and the frequency range 209 Hz–5 MHz. The Cole–Cole (Z′ versus Z″) plots are well fitted to an equivalent circuit model. The transition phase observed in the calorimetric study is confirmed by the change as function of temperature of electrical parameter such as the conductivity of grain (σg) and the σdc.  相似文献   

2.
The infrared and Raman spectra, heat of formation (HOF) and thermodynamic properties were investigated by B3LYP/6-31G** method for a new designed polynitro cage compound 1,3,5,7,9,11-hexo(N(CH3)NO2)-2,4,6,8,10,12-hexaazatetracyclo[5,5,0,0,0]dodecane. The detonation velocity (D) and pressure (P) were predicted by the Kamlet–Jacobs equations based on the theoretical density and condensed HOF. The bond dissociation energies and bond orders for the weakest bonds were analysed to investigate the thermal stability of the title compound. The computational result shows that the detonation velocity and pressure of the title compound are superior to those of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), but inferior to those of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) and hexanitrohexaazaisowurtzitane (HNIW). And the analysis of thermal stability shows that the first step of pyrolysis is the rupture of the N7–NO2 bond. The crystal structure obtained by molecular mechanics belongs to the P21 space group, with the lattice parameters Z = 2, a = 11.8246 Å, b = 10.4632 Å, c = 15.9713 Å, ρ = 1.98 g cm?3.  相似文献   

3.
A new acentric mixed metal borate of composition K2Ba[B4O5(OH)4]2·10H2O, has been successfully obtained by slow evaporation solution method. The compound crystallizes in the Orthorhombic space group Pna21 (No.33) with a = 16.8668(7) Å, b = 13.0903(5) Å, c = 11.5529(5) Å and Z = 4. [B4O5(OH)4]2? clusters serve as fundamental building unit linking with BaO8, K1O6, K2O7 by common O atoms to form three-dimensional layer structure. The second harmonic generation measurements in the powder samples reveal that the compound exhibits approximately 0.5 times that of KH2PO4 (KDP) and phase matching.  相似文献   

4.
The crystal structure of [C(NH2)3]3Sb2Br9 was determined at 143 K: monoclinic, space group C2/c, Z = 4, a = 15.695 (3), b = 9.039(2), c = 18.364(3) Å, β = 96.94(1)°. The structure consists of two crystallographically independent guanidinium ions and two-dimensional corrugated sheets of (Sb2Br9 3?) n , in which SbBr6 octahedra are connected through three bridging Br atoms each other. One of the cations situates in a cavity of the (Sb2Br9 3?) n layer with statistical disorder, while the other situates between the layers without disorder. Three 81Br NQR resonance lines were assignable to terminal Br atoms, while only one line was found for two inequivalent bridging Br atoms. All the 81Br NQR resonance lines were subjected to fade-out at low temperatures. The temperature dependence curve of 1H NMR T 1 showed well defined two minima, which were explained by postulating the C3 reorientations of two types of cations with very different activation energies. The DTA (DSC) measurement revealed a phase transition of a first-order type at 444 K.  相似文献   

5.
The present paper accounts for the synthesis, crystal structure, differential scanning calorimetry, vibrational study, and electrical properties of the [N(C3H7)4]2Zn2Cl6 compound. The latter is crystallized at room temperature in the triclinic system ( $ P\overline{1} $ space group) with the following unit cell parameters: a?=?13.736(2)Å, b?=?17.044(3)Å, c?=?17.334(2)Å, α?=?68.30(2)°, β?=?75.14(2)°, and γ?=?84.93(3). The atomic arrangement can be described by alternating organic and inorganic layers parallel to the (001) plan, made up of [N(C3H7)4]+ groups and [Zn2Cl6]2? dimers, respectively. In crystal structure, the inorganic layer, built up by Zn2Cl6 dimers, is connected to the organic ones through van der Waals interaction in order to build cation–anion–cation cohesion. The infrared and Raman studies confirm the presence of the organic group tetrapropylammonium and the Zn2Cl6 anion. Concerning the differential scanning calorimetry, it revealed two reversible solid–solid phase transitions of first order: at 327/324 K and 347/343 K (heating/cooling). Besides, the impedance spectroscopy study, reported in the sample, reveals that the conduction in the material is due to a hopping process. Regarding the temperature dependence of the dc conductivity, it suggests Arrhenius type: σ dc T?=?B ?exp(?E a /kT). The tetrapropylammonium cations appeared to be the most sensitive to the phase transition.  相似文献   

6.
The novel pyridyl‐substituted coumarin ( 1 ) and its perchlorate salt ( 2 ) have been synthesized and their structure and properties elucidated in detail spectroscopically, thermally and structurally, using single crystal X‐ray diffraction for 2 , linear‐polarized solid state IR‐spectroscopy, UV‐spectroscopy, TGA, DSC, DTA, and positive and negative ESI MS. Quantum chemical calculations were used to obtain the electronic structure, vibrational data and electronic spectra. The studied compound crystallizes in the centrosymmetric space group P‐1 and exhibits an infinite layered structure with the ions linked by means of the intermolecular N+H…OClO3 (2.795 Å) interactions. The cations are disposed in a manner leading to a significant π‐stacking effect with a distance of 2.980 Å. The effects of Npy protonation on the optical and magnetic properties are elucidated by comparing the data of the protonated and neutral compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
《光谱学快报》2013,46(4):421-436
Abstract

Phencyclone, 1, reacted with N‐(2,6‐dimethylphenyl)maleimide, 2a; with N‐(2,6‐diethylphenyl)maleimide, 2b; and with N‐(2,6‐diisopropylphenyl)maleimide, 2c, respectively, to yield the corresponding Diels–Alder adducts, 3a–c. The adducts were extensively characterized by NMR (7 T) at ambient temperatures using one‐ and two‐dimensional (1D and 2D) proton and carbon‐13 techniques for assignments. Slow exchange limit (SEL) spectra were observed, demonstrating slow rotations on the NMR timescales, for the unsubstituted bridgehead phenyl groups [C(sp3)–C(aryl sp2) bond rotations] and for the 2,6‐dialkylphenyl groups [N(sp2)–C(aryl sp2) bond rotations]. Substantial magnetic anisotropic shifts were seen in the adducts. For example, in the N‐(2,6‐dialkylphenyl) moieties of the adducts, one of the alkyl groups is directed “into” the adduct cavity, toward the phenanthrenoid portion, and these “inner” alkyl proton NMR signals were shifted upfield. Thus, in CDCl3, the “inner” methyl of adduct 3a exhibits a proton resonance at ?0.13 ppm, upfield of tetramethylsilane (TMS); the “inner” ethyl group signals from 3b appear at 0.026 ppm (CH2, quartet), and ?0.21 ppm (CH3, triplet); and the “inner” isopropyl group from 3c is seen at ?0.06 ppm (methine, approx. septet) and ?0.39 ppm (CH3, doublet). Proton NMR of the crude N‐(2,6‐dialkylphenyl)maleamic acids (used as precursors of the maleimides, 2a–c) exhibited two sets of AB quartet signals, suggesting possible conformers from hindered rotation in the amide groups about the HN–C?O bonds.  相似文献   

8.
The result of the X‐ray diffraction, differential scanning calorimetry and dielectric studies on a new crystal material C6H18N2SbCl5 is presented. The new organic–inorganic compound has been synthesized and characterized by the X‐ray diffraction method at 296(2) K. It crystallizes in the monoclinic P21/n space group. The cell dimensions are: a = 5.8617(1) Å, b = 15.7069(2) Å, c = 16.6693(2) Å, β = 97.627(1)° and Z = 4. The crystal structure consists of a discrete ionic layer of (C6H18N2)2+ cations and [SbCl5]2? anions linked via simple and bifurcated N―H · · · Cl hydrogen bonds. DSC analysis shows that this compound undergoes a phase transition at about (384 ± 2) K. AC and DC conductivities, complex dielectric permittivity ε*(ω) and complex electrical modulus M*(ω) were respectively studied as temperature and frequency functions. The combined data support each other and confirm the existence of a structural phase transition at about 384 K. Moreover, the temperature dependence of the DC conductivity and relaxation frequency followed the Arrhenius relation. The frequency dependence of the real part of the AC conductivity in both phases follows the Jonscher's universal dynamic law: . The behavior of s(T) with temperature suggests that the hopping over barrier model (CBH) and the small polaron tunneling mechanism (SPTM) prevail in phases I and II, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The high-pressure and high-temperature behaviors of LiF and NaF have been studied up to 37 GPa and 1000 K. No phase transformations have been observed for LiF up to the maximum pressure reached. The B1 to B2 transition of NaF at room temperature was observed at ~28 GPa, this transition pressure decreases with temperature. Unit-cell volumes of LiF and NaF B1 phase measured at various pressures and temperatures were fitted using a P–V–T Birch–Murnaghan equation of state. For LiF, the determined parameters are: α0 = 1.05 (3)×10?4 K?1, dK/dT = ?0.025 (2) GPa/K, V 0 = 65.7 (1) Å3, K 0 = 73 (2) GPa, and K′ = 3.9 (2). For NaF, α0 = 1.34 (4)×10?4 K?1, dK/dT = ?0.020 (1) GPa/K, V 0 = 100.2 (2) Å3, K 0 = 46 (1) GPa, and K′ = 4.5 (1).  相似文献   

10.
The crystal structure of [C(NH2)3]2HgBr4 has been determined at room temperature: monoclinic, space group C2/c, with a = 10.035(2), b = 11.164(2), c = 13.358(3) Å, β = 111.67(3)°, and Z = 4. The crystal consists of planar [C(NH2)3]+ and distorted tetrahedral [HgBr4]2? ions. The Hg atom is located on a two-fold axis such that two sets of inequivalent Br atoms exist in an [HgBr4]2? ion. In accordance with the crystal structure, two 81Br NQR lines widely separated in frequency were observed between 77 and ca. 380 K. [C(NH2)3]2HgI4 yielded four 127I NQR lines ascribable to m = ±1/2 ? ±3/2 transitions, indicating that its crystal structure is different from the bromide complex. The 1H NMR T 1 measurements showed a single minimum for the bromide but two minima for the iodide. The analyses based on the C3 reorientations of the planar [C(NH2)3]+ ions gave the activation energies of 29.8 kJ mol?1 for the bromide, and 30.2 and 40.0 kJ mol?1 for the iodide.  相似文献   

11.
The hydrogen-bonded cluster NH3 …H—C≡C—CH3 has been investigated by means of the coupled electron pair approximation, making use of a basis set of 198 contracted Gaussian-type orbitals. The calculated equilibrium structure is r 1e (N—H) = 1?0127 Å, αe(∠HN…H) = 112?32°, R 1e (N…H) = 2?3593 Å, r 2e (acetylenic C—H) = 1?0690 Å, R 2e (C≡C) = 1?2078 Å, R 3e (C—C) = 1?4711 Å, r 3e (C—H) = 1?0894 Å and βe(∠CCH) = 110?50°. The recommended equilibrium dissociation energy is D e = 12?4±0?5 kJ mol-1 and the calculated equilibrium dipole moment is μe = – 1?468 D, with the positive end of the dipole at the ammonia protons. Harmonic wavenumbers and absolute infrared intensities for the totally symmetric modes are calculated. Compared with free propyne the acetylenic CH stretching vibration experiences a bathochromic shift of 93 cm-1 and an intensity enhancement by a factor of 5?5.  相似文献   

12.
Abstract

The crystal structure of the title compound, C41 H35 N7 O6 S3 was determined as monoclinic by single crystal X-Ray diffraction technique. The molecular structure was identified by IR, 1H-NMR, 13C-NMR and elemental analysis. The crystal parameters of this compound are as follows: monoclinic P 2 1/n, a = 12.694(2) Å, b = 26.204(2) Å, c = 13.005(2) Å, β = 102.95(2)°, V = 4216.02(1) Å.3, Z = 4, Dx = 1.289 g/cm3, F(000) = 1704, λ (MoKα) = 0.71070 Å, μ = 0.2 mm?1. The structure was solved by SHELXS-97 and refined by SHELXL-97. R = 0.06 for 3178 observed reflections with I > 2σ (I).  相似文献   

13.
Measurements of the dielectric constants have revealed a transition at T=449K in Cs0.7(NH4)0.3HgCl3. This transition was confirmed by X-ray diffraction and Raman scattering on polycrystalline samples. The room-temperature phase is ordered and exhibits trigonal symmetry (space group P32 with the unit cell dimensions a = 13.295(11) Å; c = 9.419(8) Å). Transport properties in this material appear to be due to the high mobility of NH+ 4 andCs+.  相似文献   

14.
The electron paramagnetic resonance (EPR) parameters (the anisotropic g factors, the hyperfine structure parameters and the quadrupole coupling constant Q) and local structure for Cu2+ in BeO are theoretically investigated from the perturbation formulas of these parameters for a 3d9 ion under trigonally distorted tetrahedra. The ligand orbital and spin-orbit coupling contributions are included in the basis of the cluster approach, in view of the strong covalency of the [CuO4]6? cluster. From the calculations, the impurity Cu2+ is suggested not to occupy exactly the ideal Be2+ site but to suffer a slight inward displacement (≈0.024 Å) toward the ligand triangle along the C3 axis. The theoretical EPR parameters show good agreement with the experimental data.  相似文献   

15.
M. Boujelbene  T. Mhiri 《Ionics》2013,19(7):1015-1020
The structure of Na6.69Ca3.355(SO4)6Cl0.77F0.63, isostructural with fluorapatite, was determined by X-ray powder diffraction methods. The results of Rietveld refinement revealed a space group P63/m with lattice parameters of a?=?9.477 (2) Å, c?=?6.865 (5) Å. Final refinement led to R F?=?1.83 % and R B?=?7.64 %. The location of Na+ ions in the M (2) sites surrounding the channels was related particularly to the high polarizability of the Ca2+. The ionic conductivity over a wide range of temperature was investigated according to the complex impedance method. The highest overall conductivity values were found at σ 500 °C?=?1.03?×?10?5?S?cm?1 and Ea?=?0.70 eV.  相似文献   

16.
This work is on the synthesis and characterisation of a new phosphine stabilised palladium compound. the compound was first obtained from the rejects of cluster syntheses stored in the laboratory. Later on, it was prepared from PdCl2 and triphenyl phosphine. the compound was characterised by 31P {1H} NMR, UV/visible spectroscopy and elemental analysis. the crystal and molecular structure of Pd2(PPh3)3Cl5O was determined by X-ray analysis. the compound crystallizes in orthorhombic space group Pbca, N° 61, a = 19.009(2)Å, b=22.283(2)Å, c=23.726(2)Å, V=10050(20)Å3, Z=8 residuals R[I>2σ(I)]=0.0457 and R(all) = 0.0636, MoKα radiation, 20 °C.  相似文献   

17.
A series of Ni dithiolene complexes Ni[S2C2(CF3)]2n (n = ?2, ?1, 0) ( 1 , 2 , 3 ) and a 1‐hexene adduct Ni[S2C2(CF3)2]2(C6H12) ( 4 ) have been examined by Ni K‐edge X‐ray absorption near‐edge structure (XANES) and extended X‐ray absorption fine‐structure (EXAFS) spectroscopies. Ni XANES for 1 – 3 reveals clear pre‐edge features and approximately +0.7 eV shift in the Ni K‐edge position for `one‐electron' oxidation. EXAFS simulation shows that the Ni—S bond distances for 1 , 2 and 3 (2.11–2.16 Å) are within the typical values for square planar complexes and decrease by ~0.022 Å for each `one‐electron' oxidation. The changes in Ni K‐edge energy positions and Ni—S distances are consistent with the `non‐innocent' character of the dithiolene ligand. The Ni—C interactions at ~3.0 Å are analyzed and the multiple‐scattering parameters are also determined, leading to a better simulation for the overall EXAFS spectra. The 1‐hexene adduct 4 presents no pre‐edge feature, and its Ni K‐edge position shifts by ?0.8 eV in comparison with its starting dithiolene complex 3 . Consistently, EXAFS also showed that the Ni—S distances in 4 elongate by ~0.046 Å in comparison with 3 . The evidence confirms that the neutral complex is `reduced' upon addition of olefin, presumably by olefin donating the π‐electron density to the LUMO of 3 as suggested by UV/visible spectroscopy in the literature.  相似文献   

18.
Ai-Jie Mao 《Molecular physics》2013,111(8):1033-1038
The local lattice structure and EPR, optical spectra for Cr3+ doped in RbCdF3 crystal have been studied by diagonalizing the complete energy matrices. The results show that the local structure of the Cr3+ ions in RbCdF3 exhibits a compressed distortion at the trigonal and tetragonal sites. The compressed distortion can be ascribed to the fact that the radius of Cr3+ ion is smaller than that of Cd2+ ion, and therefore Cr3+ ion will draw the fluorin ligands inwards. The variational ranges of the local structural parameters for Cr3+ doped in RbCdF3 crystal R =?1.9491 Å ~?1.9814 Å, θ?= 55.234° ~?55.286° at the trigonal site and R 1 =?1.8617 Å ~?1.8928 Å, R 2 =?1.9527 Å ~?1.9851 Å at tetragonal site are obtained respectively, and the EPR and optical spectra agree well with the experimental results.  相似文献   

19.
The present paper reports the synthesis, crystal structure, 13C and 111Cd cross-polarization magic-angle spinning nuclear magnetic resonance(CP-MAS-NMR) analysis and ac conductivity for a new organic–inorganic hybrid salt, [C7H12N2][CdCl4]. The compound crystallizes in the triclinic system, space group P\( \overline 1 \), with unit cell dimensions: a?=?7.1050(3) Å, b?=?8.9579(3) Å, c?=?9.4482(3) Å, α?=?81.415(1)°, β?=?89.710(2)°, γ?=?85.765(1)°, V?=?592.97(4) Å3, and Z?=?2. The asymmetric unit is composed of one-2,4-diammonium toluene cation and one [CdCl4]2? anion. The Cd atom is in a slightly distorted octahedra coordination environment. Its structure can be described by infinite chains of CdCl6 octahedron linked to organic cations by a strong charge-assisted N–H???Cl interactions in order to build organic–inorganic layers staked along \( \left[ {0\overline 1 1} \right] \) direction. The solid state 13C CP-MAS-NMR spectra has shown seven isotropic resonances, confirming the existence of seven non-equivalent carbon atoms, which is consistent with crystal structure determined by X-ray diffraction. As for 111Cd MAS-NMR, it has shown one cadmium site with isotropic chemical shift observed at 167.2 ppm. The complex impedance of the compound has been investigated in the temperature range of 403–460 K and in the frequency range of 200 Hz–5 MHz. The impedance plots have shown semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements.  相似文献   

20.
Symmetrical triblock semifluorinated n-alkane, di(perfluorohexyl)hexane of the formula F(CF2)6(CH2)6(CF2)6F (abbreviated F6H6F6), has been synthesised and investigated at the air/water interface. Our results show for the first time that this unusual film-forming material, completely hydrophobic in nature and possessing no polar group, is capable of stable film formation at the free water surface. The surface pressure–area isotherm of the studied compound exhibited two regions: corresponding to monotonous pressure rise, followed by a pseudo-plateau region. Visualisation of film structure with Brewster angle microscope (BAM) proved the formation of domains within the pseudo-plateau region. A closer insight into the structure of these domains with atomic force microscope (AFM) proved their ordered, circular shape. The average area of F6H6F6 domain was found to depend on surface pressure value, as it is 4.98 ± 1.75 μm2 at π = 1.2 mN/m to 16.54 ± 0.31 μm2 at π = 1.7 mN/m. Following performed quantum-chemical calculations, it can be concluded that the observed surface aggregates from F6H6F6 are formed by linear conformers with shifted CF and CH parts. The calculated domain thickness is between 20 and 21 Å, which perfectly agrees with the experimental value estimated from AFM measurements (20.3 ± 1.4 Å).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号