首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An excitation-pattern algorithm is described which provides an estimate of cancellation level and phase for the (2f1-f2) and (f2-f1) distortion products. An experiment is first conducted to demonstrate the need for such an algorithm for (f2-f1) level predictions. The results of this experiment, which employed three pairs of primaries having complementary input levels (L1 = 65, L2 = 85 dB; L1 = 85, L2 = 65 dB), do not agree with the predictions of another similar algorithm [E. Zwicker, J. Acoust. Soc. Am. 69, 1410-1413 (1981)]. A new excitation-pattern algorithm is then described. The predicted level behavior for (f2-f1) and (2f1-f2) is more accurate for the proposed algorithm. In addition, an accurate phase estimate is also provided by the new algorithm.  相似文献   

2.
A new method for direct pure-tone threshold estimation from input/output functions of distortion product otoacoustic emissions (DPOAEs) in humans is presented. Previous methods use statistical models relating DPOAE level to hearing threshold including additional parameters e.g., age or slope of DPOAE I/O-function. Here we derive a DPOAE threshold from extrapolated DPOAE I/O-functions directly. Cubic 2 f1-f2 distortion products and pure-tone threshold at f2 were measured at 51 frequencies between f2=500 Hz and 8 kHz at up to ten primary tone levels between L2=65 and 20 dB SPL in 30 normally hearing and 119 sensorineural hearing loss ears. Using an optimized primary tone level setting (L1 = 0.4L2 + 39 dB) that accounts for the nonlinear interaction of the two primaries at the DPOAE generation site at f2, the pressure of the 2 f1-f2 distortion product pDP is a linear function of the primary tone level L2. Linear regression yields correlation coefficients higher than 0.8 in the majority of the DPOAE I/O-functions. The linear behavior is sufficiently fulfilled for all frequencies in normal and impaired hearing. This suggests that the observed linear functional dependency is quite general. Extrapolating towards pDP=0 yields the DPOAE threshold for L2. There is a significant correlation between DPOAE threshold and pure-tone threshold (r=0.65, p<0.001). Thus, the DPOAEs that reflect the functioning of an essential element of peripheral sound processing enable a reliable estimation of cochlear hearing threshold up to hearing losses of 50 dBHL without any statistical data.  相似文献   

3.
The 2f1-f2 distortion product otoacoustic emission (DPOAE) is thought to arise primarily from the complex interaction of components that come from two different cochlear locations. Such distortion has its origin in the nonlinear interaction on the basilar membrane of the excitation patterns resulting from the two stimulus tones, f1 and f2. Here we examine the spatial extent of initial generation of the 2f1-f2 OAE by acoustically traumatizing the base of the cochlea and so eliminating the contribution of the basal region of the cochlea to the generation of 2f1-f2. Explicitly, amplitude-modulated, or continuously varying in level, stimulus tones with f2/f1= 1.2 and f2 =8000-8940 Hz were used to generate the 2f1-f2 DPOAE in guinea pig before and after acoustically traumatizing the basal region of the cochlea (the origin of any basal-to-f2 distortion product generators). It was found, based on correlation analysis, that there does not appear to be a basal-to-f2 distortion product generation mechanism contributing significantly to the guinea pig 2f1-f2 OAE up to L1 = 80 dB sound pressure level (SPL).  相似文献   

4.
The acoustic intermodulation distortion product 2f1-f2 (ADP) was measured in human subjects to investigate (1) the dependence of ADP level on stimulus parameters and (2) the relationship between ADP level and auditory sensitivity. The frequency ratio (f2/f1), at which ADP level is maximal, varies only slightly across frequency and subjects. The average optimal ratio is 1.225. Beyond the maximum, the ADP level declines with increasing f2/f1 ratio, at rates of up to 250 dB/oct. As the level of one stimulus is increased relative to the other, the ADP grows, saturates, and in most cases shows a bendover. Maximum distortion is generated when L 1 exceeds L 2. Growth rate and saturation point are dependent on which stimulus is incremented and on the level of the stationary stimulus. With optimal stimulus parameters (levels below 60 dB SPL; L 1 greater than L 2 by 15 dB; f2/f1 = 1.225), ADP levels are commonly 30 dB below L 2. Patterns of ADP level across frequency vary between subjects, but are repeatable within each subject. As the frequency of one or both of the stimuli is varied, changes in ADP level exhibit a broadly featured pattern with a fine structure superimposed upon it. This fine structure was compared with the features in the stimulus frequency emission spectrum in one subject. With appropriate stimulus parameters, half of our subjects show a statistically significant correlation across frequency, between ADP level and auditory sensitivity at the corresponding f1 frequency. Our results suggest that, with low levels of stimulation, ADP measurements could form the basis of an objective measure of cochlear function in human subjects.  相似文献   

5.
Nonlinear phenomena as observed in the ear canal and at the auditory nerve   总被引:1,自引:0,他引:1  
We report here several measures of nonlinear effects in the mammalian ear made in the external auditory meatus and in single neurons of the auditory nerve. We have measured the 2f1-f2 and the f2-f1 distortion products and we have found that the neural distortion product threshold curve for 2f1-f2 mirrors the low-frequency side of the frequency threshold curve, when the neural distortion product threshold curve of 2f1-f2 is plotted versus log(f2/f1) its slope is about 50 dB/oct and its intercept is 10-20 dB above the frequency threshold at the characteristic frequency CF, substantial 2f1-f2 distortion was seen in all animals studied while the f2-f1 distortion product was only rarely found at substantial levels, and the distortion product pressure observed in the ear canal was at a level equal to that detected at threshold by the neural units under study. We have also made measurements of two-tone rate suppression thresholds using two new and consistent threshold paradigms. We find that for high and intermediate characteristic frequency neural units the suppression threshold is independent of frequency and at a level of about 70 dB SPL, the suppression above CF is much less than below CF, and the tip of the frequency tuning curve can be suppressed by up to 40 dB by a low-frequency suppressor.  相似文献   

6.
The present study examined the dependence of difference tone level [L(f2-f1)] on the following parameters of the two-tone input: f1, f2/f1 (f2 greater than f1), L1, L2, and L1 = L2. Difference tone levels were estimated in four normal hearers using a 2AFC adaptive temporal gap-masking paradigm. The key finding in this study is the apparent interaction of each factor with the other. For example, primary level (L1 = L2) was found to affect the dependence of L(f2-f1) on f1 and on f2/f1. In addition, the frequency separation of the primaries (f2/f1) was also seen to exert an influence on the dependence of difference tone level on L1, L2, and L1 = L2.  相似文献   

7.
It is commonly observed that the levels of the 2f1-f2 and the other mf1-nf2 (m = n + 1 = integer) distortion product otoacoustic emissions (DPOAEs) initially increase in level for fixed f2 as fl -->f2, starting at f1 相似文献   

8.
Psychoacoustical and ear canal cancellation of (2f1-f2)-distortion products   总被引:1,自引:0,他引:1  
Level and phase of the (2f1-f2)-difference tone were measured as a function of primary-tone level using the psychoacoustical method of cancellation and the objective method of emission cancellation for four frequency separations of f1 = 1620 Hz and f2 in four subjects. Differences between hearing- and emission-cancellation levels ranged from 60-33 dB as delta f = f2-f1 increased from 180 to 432 Hz. For smaller separations of the primaries, phase changes for emission cancellation covered a wide range and had sharp "steps," whereas for hearing cancellation, the phase varied only slightly. With wider separations of the primaries, the phase became more varied for hearing cancellation and more homogeneous for emission cancellation. Both emission- and hearing-cancellation level functions were nonmonotonic as a function of constant SL1 and varied SL2. Remarkable phase shifts always appeared near minima in level at all separations of the primaries for emission cancellation. Four sources may be contributing to the differences in results: (a) the frequency-dependent attenuation of the middle-ear transfer function, (b) the frequency-dependent mismatch of the acoustical impedances at the eardrum, (c) the frequency dependence of the microphone's sensitivity mounted within the probe, and (d) the different reaction of active nonlinear cochlear processes on the hearing- and emission-cancellation tones.  相似文献   

9.
Recordings of dc and ac receptor potentials from pigmented guinea pig inner hair cells indicate strong responses to the 2f1-f2 intermodulation tone when f1 and f2 are greater than the hair cell characteristic frequency and do not cause a response when given individually. The effective magnitude of this cubic distortion product (CDP) was about 25-30 dB below equal sound level primaries over a 20-30-dB range of their sound levels. The relative strength of the CDP declined at a rate greater than 180-dB/oct separation of the primaries. When magnitude of f1 or f2 was held constant, the growth of CDP was nonmonotonic, exhibiting a distinct maximum. With a constant level of f1 or f2, optimal CDP was produced when the level of f2 was 10-15 dB greater than f1. Strong two-tone suppression from the primaries has a role in shaping the CDP growth. The ac receptor potentials of the CDP show a 150 degrees-200 degrees phase shift when the primaries are increased over a 50-dB range. These results support the hypothesis of a propagated CDP in the cochlea and are consistent with the major features of related studies of human psychoacoustic experiments, afferent nerve neural rate functions, and ear canal distortion products.  相似文献   

10.
2f1-f2 distortion product otoacoustic emissions (DPOAEs) were recorded from guinea pigs. DPOAEs showed complex time dependence at the onset of stimulation. The DPOAE, measured during the first 500 ms, can either decrease or increase at the onset depending on both the frequencies and levels of the primary tones. These changes are closely associated with amplitude minima (notches) of the DPOAE I/O functions. These notches are characteristic of DPOAE growth functions measured from guinea pigs for primary tones of 50-60-dB sound-pressure level (SPL). Apparent changes in the DPOAE amplitude occur because the notch shifts to higher levels of the primaries during the onset of stimulation. This shift of the notch to higher levels increases for lower f2/f1 ratios but does not exceed about 2 dB. DPOAE amplitude increases for a constant level of the primaries if the onset emission is situated at the low-level, falling slope of the notch. If the onset DPOAE is located on the high-level, rising slope of the notch, then the upward shift of the notch causes the emission either to decrease monotonically, or to decrease initially and then increase. By establishing that the 2f1-f2 onset changes reflect a shift in the growth-function notch, it is possible to predict the temporal behavior of DPOAEs in the two-dimensional space of the amplitude of the primaries and for their different frequency ratios.  相似文献   

11.
In a previous paper (Arnold and Burkard, 1998) a dichotic f2-f1 difference tone (DT) auditory evoked potential from the chinchilla inferior colliculus (IC) was measured while presenting f1 (2000 Hz) to one ear and f2 (2100 Hz) to the other ear. This measurement paradigm could be used as a means to study binaural processing in an unanesthetized animal model. However, it is possible that this response is actually generated peripherally, as a result of acoustic crossover. The purpose of the present set of experiments was to investigate whether the dichotic DT is a true binaural phenomenon. Recordings were made from chronically implanted IC electrodes in unanesthetized, monaural chinchillas (left cochlea destroyed). In experiment 1, interaural attenuation (IA) was measured in two ways. First, IA was measured by comparing IC evoked potential thresholds obtained when stimulating the normal right ear and the dead left ear, using tone bursts (0.5-8 kHz). Mean values of interaural attenuation ranged from 50-65 dB across frequency (55 dB at 2000 Hz). Next, the DT was measured monaurally using f1 = 2000 and f2 = 2100 (L1 = L2). By comparing the mean DT input/output functions for monaural stimulation of the right and left ears, a mean value of IA for the tonal pair was estimated (approximately 69 dB). In experiment 2, the DT was measured with right monaural stimulation, while varying the relative levels of the primaries. A small DT could be seen with primary levels up to 30 dB apart, but not for greater level differences. Differences substantially greater than 30 dB would be expected in the crossover situation based upon IA. In experiment 3, the stimuli were presented dichotically (f1 to right ear, f2 to left ear and vice versa, L1 = L2) to determine whether acoustic crosstalk to the normal right ear would generate a DT. No DT was reliably observed in this condition. Taken together, these results suggest that the dichotic DT is a true binaural phenomenon, and not simply attributable to acoustic crossover.  相似文献   

12.
The purpose of the present study was to determine the effect of primary-tone level variation, L2--L1, on the amplitude of distortion-product otoacoustic emissions (DPOAEs). The DPOAE at the frequency 2f1--f2 (f2 greater than f1) was measured in 20 ears of ten normally hearing subjects. Acoustic distortion products were generated by primaries f1 and f2 with geometric mean frequencies of 1, 2, and 4 kHz. The f2/f1 ratios were 1.25 (1 kHz), 1.23 (2 kHz), and 1.21 (4 kHz). The primary-tone level L1 was kept constant at either 65 or 75 dB SPL while the second primary-tone level L2 was varied between 20 and 90 dB SPL in 5-dB steps. The level differences L2--L1 generating maximal DPOAE amplitudes depended on L1 and on the geometric mean frequency of f1 and f2. There were large interindividual differences. Overall, the L2--L1 evoking maximal mean DPOAE amplitudes was --10 dB for geometric mean frequencies of 1 and 2 kHz with both L1 = 65 dB SPL and L1 = 75 dB SPL. For 4 kHz, L2-L1 was --5 dB with L1 = 65 dB SPL and 0 dB with L1 = 75 dB SPL. The mean slopes of the DPOAE growth functions in the initial linearly increasing portions were steeper at higher stimulus frequencies, increasing from 0.52 at 1 kHz to 0.72 at 4 kHz for L1 = 65 dB SPL and from 0.48 at 1 kHz to 0.72 at 4 kHz for L1 = 75 dB SPL.  相似文献   

13.
DPOAE input/output (I/O) functions were measured at 7f2 frequencies (1 to 8 kHz; f2/f1 = 1.22) over a range of levels (-5 to 95 dB SPL) in normal-hearing and hearing-impaired human ears. L1-L2 was level dependent in order to produce the largest 2f1-f2 responses in normal ears. System distortion was determined by collecting DP data in six different acoustic cavities. These data were used to derive a multiple linear regression model to predict system distortion levels. The model was tested on cochlear-implant users and used to estimate system distortion in all other ears. At most but not all f2's, measurements in cochlear implant ears were consistent with model predictions. At all f2 frequencies, the ears with normal auditory thresholds produced I/O functions characterized by compressive nonlinear regions at moderate levels, with more rapid growth at low and high stimulus levels. As auditory threshold increased, DPOAE threshold increased, accompanied by DPOAE amplitude reductions, notably over the range of levels where normal ears showed compression. The slope of the I/O function was steeper in impaired ears. The data from normal-hearing ears resembled direct measurements of basilar membrane displacement in lower animals. Data from ears with hearing loss showed that the compressive region was affected by cochlear damage; however, responses at high levels of stimulation resembled those observed in normal ears.  相似文献   

14.
Recently, Boege and Janssen [J. Acoust. Soc. Am. 111, 1810-1818 (2002)] fit linear equations to distortion product otoacoustic emission (DPOAE) input/output (UO) functions after the DPOAE level (in dB SPL) was converted into pressure (in microPa). Significant correlations were observed between these DPOAE thresholds and audiometric thresholds. The present study extends their work by (1) evaluating the effect of frequency, (2) determining the behavioral thresholds in those conditions that did not meet inclusion criteria, and (3) including a wider range of stimulus levels. DPOAE I/O functions were measured in as many as 278 ears of subjects with normal and impaired hearing. Nine f2 frequencies (500 to 8000 Hz in 1/2-octave steps) were used, L2 ranged from 10 to 85 dB SPL (5-dB steps), and L1 was set according to the equation L1 = 0.4L2 + 39 dB [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)] for L2 levels up to 65 dB SPL, beyond which L1 = L2. For the same conditions as those used by Boege and Janssen, we observed a frequency effect such that correlations were higher for mid-frequency threshold comparisons. In addition, a larger proportion of conditions not meeting inclusion criteria at mid and high frequencies had hearing losses exceeding 30 dB HL, compared to lower frequencies. These results suggest that DPOAE I/O functions can be used to predict audiometric thresholds with greater accuracy at mid and high frequencies, but only when certain inclusion criteria are met. When the SNR inclusion criterion is not met, the expected amount of hearing loss increases. Increasing the range of input levels from 20-65 dB SPL to 10-85 dB SPL increased the number of functions meeting inclusion criteria and increased the overall correlation between DPOAE and behavioral thresholds.  相似文献   

15.
Low- and high-frequency cochlear nonlinearity was studied by measuring distortion product otoacoustic emission input/output (DPOAE I/O) functions at 0.5 and 4 kHz in 103 normal-hearing subjects. Behavioral thresholds at both f2's were used to set L2 in dB SL for each subject. Primary levels were optimized by determining the L1 resulting in the largest L(dp) for each L2 for each subject and both f2's. DPOAE I/O functions were measured using L2 inputs from -10 dB SL (0.5 kHz) or -20 dB SL (4 kHz) to 65 dB SL (both frequencies). Mean DPOAE I/O functions, averaged across subjects, differed between the two frequencies, even when threshold was taken into account. The slopes of the I/O functions were similar at 0.5 and 4 kHz for high-level inputs, with maximum compression ratios of about 4:1. At both frequencies, the maximum slope near DPOAE threshold was approximately 1, which occurred at lower levels at 4 kHz, compared to 0.5 kHz. These results suggest that there is a wider dynamic range and perhaps greater cochlear-amplifier gain at 4 kHz, compared to 0.5 kHz. Caution is indicated, however, because of uncertainties in the interpretation of slope and because the confounding influence of differences in noise level could not be completely controlled.  相似文献   

16.
A maximum auditory steady-state response (ASSR) amplitude is yielded when the ASSR is elicited by an amplitude-modulated tone (f(c)) with a fixed modulation frequency (f(m) = 40 Hz), whereas the maximum distortion product otoacoustic emission (DPOAE) level is yielded when the DPOAE is elicited using a fixed frequency ratio of the primary tones (f2/f1 = 1.2). When eliciting the DPOAE and ASSR by the same tone pair, optimal stimulation is present for either DPOAE or ASSR and thus adequate simultaneous DPOAE/ASSR measurement is not possible across test frequency f2 or f(c), respectively. The purpose of the present study was to determine whether the ASSR and DPOAE can be measured simultaneously without notable restrictions using a DPOAE stimulus setting in which one primary tone is amplitude modulated. A DPOAE of frequency 2f1-f2 and ASSR of modulation frequency 41 Hz were measured in ten normal hearing subjects at a test frequency between 0.5 and 8 kHz (f2 = f(c)). The decrease in the DPOAE level and the loss in ASSR amplitude during hybrid mode stimulation amounted, on average, to only 2.60 dB [standard deviation (SD) = 1.38 dB] and 1.83 dB (SD = 2.38 dB), respectively. These findings suggest simultaneous DPOAE and ASSR measurements to be feasible across all test frequencies when using a DPOAE stimulus setting where the primary tone f2 is amplitude modulated.  相似文献   

17.
This study compared the ability of 5 listeners with normal hearing and 12 listeners with moderate to moderately severe sensorineural hearing loss to discriminate complementary two-component complex tones (TCCTs). The TCCTs consist of two pure tone components (f1 and f2) which differ in frequency by delta f (Hz) and in level by delta L (dB). In one of the complementary tones, the level of the component f1 is greater than the level of component f2 by the increment delta L; in the other tone, the level of component f2 exceeds that of component f1 by delta L. Five stimulus conditions were included in this study: fc = 1000 Hz, delta L = 3 dB; fc = 1000 Hz, delta L = 1 dB; fc = 2000 Hz, delta L = 3 dB; fc = 2000 Hz, delta L = 1 dB; and fc = 4000 Hz, delta L = 3 dB. In listeners with normal hearing, discrimination of complementary TCCTs (with a fixed delta L and a variable delta f) is described by an inverted U-shaped psychometric function in which discrimination improves as delta f increases, is (nearly) perfect for a range of delta f's, and then decreases again as delta f increases. In contrast, group psychometric functions for listeners with hearing loss are shifted to the right such that above chance performance occurs at larger values of delta f than in listeners with normal hearing. Group psychometric functions for listeners with hearing loss do not show a decrease in performance at the largest values of delta f included in this study. Decreased TCCT discrimination is evident when listeners with hearing loss are compared to listeners with normal hearing at both equal SPLs and at equal sensation levels. In both groups of listeners, TCCT discrimination is significantly worse at high center frequencies. Results from normal-hearing listeners are generally consistent with a temporal model of TCCT discrimination. Listeners with hearing loss may have deficits in using phase locking in the TCCT discrimination task and so may rely more on place cues in TCCT discrimination.  相似文献   

18.
The simultaneous presentation of two tones with frequencies f(1) and f(2) causes the perception of several combination tones in addition to the original tones. The most prominent of these are at frequencies f(2)-f(1) and 2f(1)-f(2). This study measured human physiological responses to the 2f(1)-f(2) combination tone at 500 Hz caused by tones of 750 and 1000 Hz with intensities of 65 and 55 dB SPL, respectively. Responses were measured from the cochlea using the distortion product otoacoustic emission (DPOAE), and from the auditory cortex using the 40-Hz steady-state magnetoencephalographic (MEG) response. The perceptual response was assessed by having the participant adjust a probe tone to cause maximal beating ("best-beats") with the perceived combination tone. The cortical response to the combination tone was evaluated in two ways: first by presenting a probe tone with a frequency of 460 Hz at the perceptual best-beats level, resulting in a 40-Hz response because of interaction with the combination tone at 500 Hz, and second by simultaneously presenting two f(1) and f(2) pairs that caused combination tones that would themselves beat at 40 Hz. The 2f(1)-f(2) DPOAE in the external auditory canal had a level of 2.6 (s.d. 12.1) dB SPL. The 40-Hz MEG response in the contralateral cortex had a magnitude of 0.39 (s.d. 0.1) nA m. The perceived level of the combination tone was 44.8 (s.d. 11.3) dB SPL. There were no significant correlations between these measurements. These results indicate that physiological responses to the 2f(1)-f(2) combination tone occur in the human auditory system all the way from the cochlea to the primary auditory cortex. The perceived magnitude of the combination tone is not determined by the measured physiological response at either the cochlea or the cortex.  相似文献   

19.
Measurements of DPOAE level in the presence of a suppressor were used to describe a pattern that is qualitatively similar to population studies in the auditory nerve and to behavioral studies of upward spread of masking. DPOAEs were measured in the presence of a suppressor (f3) fixed at either 2.1 or 4.2 kHz, and set to each of seven levels (L3) from 20 to 80 dB SPL. In the presence of a fixed f3 and L3 combination, f2 was varied from about 1 oct below to at least 1/2 oct above f3, while L2 was set to each of 6 values (20-70 dB SPL). L1 was set according to the equation L1 = 0.4L2 + 39 [Janssen et al., J. Acoust. Soc. Am. 103, 3418-3430 (1998)]. At each L2, L1 combination, DPOAE level was measured in a control condition in which no suppressor was presented. Data were converted into decrements (the amount of suppression, in dB) by subtracting the DPOAE level in the presence of each suppressor from the DPOAE level in the corresponding control condition. Plots of DPOAE decrements as a function of f2 showed maximum suppression when f2 approximately = f3. As L3 increased, the suppressive effect spread more towards higher f2 frequencies, with less spread towards lower frequencies relative to f3. DPOAE decrement versus L3 functions had steeper slopes when f2 > f3, compared to the slopes when f2 < f3. These data are consistent with other findings that have shown that response growth for a characteristic place (CP) or frequency (CF) depends on the relation between CP or CF and driver frequency, with steeper slopes when driver frequency is less than CF and shallower slopes when driver frequency is greater than CF. For a fixed amount of suppression (3 dB), L3 and L2 varied nearly linearly for conditions in which f3 approximately = f2, but grew more rapidly for conditions in which f3 < f2, reflecting the basal spread of excitation to the suppressor. The present data are similar in form to the results observed in population studies from the auditory nerve of lower animals and in behavioral masking studies in humans.  相似文献   

20.
Distortion product otoacoustic emissions (DPOAEs) are used widely in humans to assess cochlear function. It is well known that 2f1-f2 DPOAE amplitude increases as the f2/f1 ratio increases from 1.0 to about 1.20, and then decreases as the f2/f1 ratio increases above 1.20, showing an amplitude ratio function, which is thought to be related to cochlear filtering properties. Different lower sideband DPOAEs are believed to show the same amplitude ratio functions as the 2f1-f2 DPOAE, with a magnitude peak situated at a constant DPOAE frequency relative to f2. More recently, several studies have suggested the involvement of a DPOAE component coming from its own distortion product place as well as the DPOAE component coming from the f2 place. To investigate DPOAE generation sites and the importance of the DPOAE frequency place, amplitude ratio functions of 2f1-f2, 3f1-2f2, 4f1-3f2 and 2f2-f1, 3f2-2f1, 4f2-3f1 DPOAE components have been systematically studied in 18 normally hearing subjects, using an f2 fixed, f1 sweep method, and an f1 fixed, f2 sweep method, at ten different f2 frequencies. Results show a dependency of the distortion magnitude peak on f2 frequency for each lower sideband DPOAE, and a small frequency shift of the distortion peak for the high order lower sideband DPOAE components. Strong correlation between the different lower sideband DPOAE amplitude were obtained, whether they were recorded with the same f1 (and a different f2) or with the same f2 (and a different f1), suggesting that lower side-band DPOAE amplitude does not depend on small variations in the f2 frequency. Moreover, correlations between DPOAE amplitude and tone-burst evoked otoacoustic emissions (TBOAEs) are highly significant for TBOAEs centered at the f2 frequency and at 1/2 octave below the f2 frequency, suggesting some degree of importance of the cochlear status at frequencies below f2 in DPOAE amplitude. Subjects presenting spontaneous otoacoustic emissions showed a greater lower sideband DPOAE amplitude recorded for low f2/f1 ratios, and a distortion magnitude peak shifted towards higher frequencies. The best correlation between upper sideband DPOAE amplitude and lower sideband DPOAE amplitude occurred for lower sideband DPOAEs generated by an f2 frequency 1/2 octave to 1 octave below the primaries used to generate upper sideband DPOAEs, suggesting a site of generation basal to f2 for the upper sideband DPOAEs. Correlations between TBOAE amplitude and upper sideband DPOAE amplitude agreed with a site of upper sideband DPOAE generation basal to f2, and which would move with the DPOAE frequency itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号