首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Semiconducting oligomers and polymers decorated with two or one dendronized tpy‐Ru(II)‐tpy metallocomplexes are presented. Initially, free terpyridine end‐functionalized semiconducting oligomers (distyrylanthracene, quinquephenylene, mono‐ and trifluorenes) were prepared while in a second approach, atom transfer radical polymerization was employed for the preparation of side‐chain oligomeric and polymeric (oxadiazole)s using a terpyridine initiator. These terpyridine‐bearing oligomers and polymers were complexated with a Percec‐type first‐generation (G1) dendronized terpyridine–Ru(III)Cl3 monocomplex, having two dodecyloxy groups. All oligomeric and polymeric metallocomplexes were characterized via NMR spectroscopies for their structural perfection and via UV‐Vis and PL spectroscopies for their optical properties. The existence of the organic semiconducting blocks in combination with the terpyridine–Ru(II)–terpyridine groups afforded hybrid metallo‐semiconducting species presenting the optical features of both their components. Moreover, their thin‐film morphologies were investigated through atomic force microscopy, revealing, in some cases, an organization tendency in the nanometer scale. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1939–1952, 2009  相似文献   

2.
Surface functionalization of CNTs (SWCNTs or MWCNTs) with dendronized alkoxy terpyridine‐Ru(II)‐terpyridine complexes has been accomplished using either the “grafting to” or the “grafting from” approaches. Different sets of easily processable hybrid metallo‐CNTs composites have been efficiently synthesized bearing either monomeric or polymeric side chain tpy‐Ru(II)‐tpy dicomplexes. Their characterization through TGA, UV‐Vis, and Raman techniques revealed various modification degrees depending on the methodology employed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2551–2559, 2009  相似文献   

3.
Synthetic approaches to metal complexes with polymeric ligands are described. The development of efficient methods for preparing simple bipyridine (bpy) derivatives and their corresponding metal complexes has facilitated their use as initiators and coupling agents in polymer syntheses. Ligand reagents were utilized as initiators in controlled polymerization reactions to form poly(2‐R‐2‐oxazolines) (R = methyl, ethyl, phenyl, undecyl), polystyrenes, poly(methyl methacrylates) (PMMA)s, poly(ϵ‐caprolactone)s, and poly(lactic acid)s with bipyridine chelates at the end or centers of the chains. Poly(ethylene glycol) macroligands were formed by a chain‐coupling method. Detailed studies of reaction kinetics were performed to determine the scope and limitations of each reaction type with different catalysts and reaction conditions. These results are illustrated for bpyPMMAn (n = 1 or 2), which was prepared by atom transfer radical polymerization with a CuBr/1,4,4,7,7,10‐hexamethyltriethylenetetraamine catalyst system. Results of the kinetics investigations performed with other ligands and metalloinitiators are summarized. Macroligands thus prepared were coordinated to a labile metal ion, Fe(II), with standard protocols. Ultraviolet–visible spectral data for selected Fe‐centered polymers are provided that confirm the production of the targeted polymeric iron complex products. An inert metal, Ru(II), was used as a template for generating architectural diversity; polymeric complexes with one to six chains emanating from the central core, as well as different heteroarm star products, were prepared. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4704–4716, 2000  相似文献   

4.
Williamson type ether reactions were utilized for a high yield reaction of 4′‐chloro‐2,2′:6′,2″‐terpyridine with α,ω‐dihydroxy‐functionalized poly(ethylene oxide) and poly(oxytetramethylene)s to obtain bis(terpyridine)‐terminated telechelics. The completeness of the functionalization was proven by NMR spectroscopy, GPC and MALDI‐TOF‐MS investigations. The addition of transition metal ions resulted in a polyaddition polymerization leading to the formation of extended metallo‐supramolecular polymers, as proven by UV/VIS spectroscopy titration experiments.  相似文献   

5.
Siderophores are low molecular weight non-ribosomal peptides with extremely high affinity by iron. However, other metals present affinity for siderophores but to a smaller degree. Deferoxamine is an example of a bacterial hydroxamic siderophore, which was investigated herein. Capillary zone electrophoresis (CZE) was used as a new approach in the continuous variation method for the characterization of metal-deferoxamine complexes. A set of samples containing both metal (e.g., Fe(III), Fe(II) or Ni(II)) and siderophore with different molar ratios was prepared and analyzed by both CZE and UV-vis spectrophotometry. A phosphate buffer pH 8.0 was used as the background electrolyte in the first case due to best complex and free ligand peaks resolution. The Job's plots obtained from complex peak areas (complex concentration) versus metal molar fraction revealed complexes stoichiometries of M : L of 2 : 3, 1 : 2 and 1 : 1 for Fe(III), Fe(II) and Ni(II) complexes, respectively. Conditional formation constants could also be calculated for Fe(III) and Fe(II) complexes as Kf = 1.03 × 1013 and 2.47 × 104, respectively. UV-visible spectrophotometric analysis confirmed the data obtained for Fe(III)-complex.  相似文献   

6.
4′‐Chloro‐2,2′:6′,2″‐terpyridine was reacted in a high yield Williamson type reaction with α‐hydroxy‐ω‐carboxy‐functionalized poly(ethylen‐oxide) to obtain monoterpyridine terminated telechelics. The completeness of the functionalization was proven by NMR, GPC and MALDI‐TOF‐MS investigations. Addition of transition metal ions resulted in the formation of the corresponding octahedral terpyridine metal complexes and resulted in the formation of metallo‐supramolecular dimers.  相似文献   

7.
Summary: The phase behavior of metallo‐supramolecular block copolymers with bulky counter ions is theoretically studied within the framework of a mean‐field dynamic density functional theory and compared with recent experiments on a polystyrene–poly(ethylene oxide) metallo‐supramolecular diblock copolymer, PS20‐[Ru]‐PEO70, with tetraphenylborate counter ions. The copolymer is modeled as a triblock polyelectrolyte, in which the metal complex is treated as the polyelectrolyte block. The topology and kinetics of the formation of the observed three‐domain lamellar morphology in which the polyelectrolyte blocks and bulky counter ions are located together to form electroneutral complexes, are in good agreement with experimental results. In addition, the model predicts the existence of core–shell morphologies. The agreement with and variations from the experimental phase diagram are discussed in detail.

Morphological transformations in a metallo‐supramolecular block copolymer with bulky counter ions upon increasing the temperature.  相似文献   


8.
Abstract

Catalase‐like activity of metal complexes of various crosslinked polystyrene‐supported glycines were carried out and correlated with the nature of crosslinking agent in the polymer support. Polystyrenes with 2 mol% divinyl benzene (DVB), ethylene glycol dimethacrylate (EGDMA), and 1,6‐hexanediol diacrylate (HDODA) crosslinking were used as polymer supports. Glycine functions were incorporated to the chloromethylpolystyrenes by polymer analogues reactions and complexed with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal uptake varied in the order: Cu(II) > Cr(III) > Mn(II) > Co(II) > Fe(III) > Ni(II) > Zn(II), and extent of metal uptake by various crosslinked systems varied with the nature of crosslinking agent. The polymeric ligands and the metal complexes were characterized by various analytical techniques. The catalytic activities of these metal complexes were investigated towards the decomposition of hydrogen peroxide and was found to decrease in the order: Co(II) > Cu(II) > Ni(II) > Cr(III) > Fe(III) > Mn(II) > Zn(II). With increasing rigidity of the crosslinking agent the catalytic activity also decreased.  相似文献   

9.
An amphiphilic metallo‐supramolecular poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide) diblock copolymer containing a bis(2,2′:6′,2″‐terpyridine)ruthenium(II) complex as a supramolecular connection between the two constituting blocks was used to prepare stable aqueous micelles. The micelles were characterized by dynamic light scattering and atomic force microscopy. Individual micelles were observed together with aggregates of micelles. Only the addition of a large excess of competitive ligand caused the cleavage of the very stable ruthenium complex.  相似文献   

10.
A series of dinuclear metal terpyridine (M-tpy; M = Ru, Os, Fe, and Co) complexes with a photochromic dithienylethene bridge were designed and synthesized through either a convergent or a divergent approach. The open forms of the complexes containing RuII and FeII centers were found to be inert to ultraviolet photoirradiation but could be cyclized electrochemically as revealed by a cyclic voltammetric study. On the contrary, the CoII complex underwent efficient photochemical but not electrochemical cyclization. The corresponding OsII complex was neither photochromic nor electrochromic.  相似文献   

11.
Polymers containing side‐chain terpyridine ligands of well‐defined architectures and controllable molecular weights and molecular weight distributions are reported. These polymers were synthesized by the atom transfer radical polymerization (ATRP) of a newly synthesized terpyridine monomer with three functional initiators. The obtained polymers were characterized with 1H NMR and gel permeation chromatography techniques. The efficiency of the ATRP technique and the overall control of the molecular characteristics of the polymers were demonstrated by a kinetic study of the polymerization reaction. Subsequently, the ruthenium(III)/ruthenium(II) complexation chemistry was employed for the attachment of bis(dodecyloxy)‐functionalized terpyridine moieties onto each side 2,2′:6′,2″‐terpyridine unit of the main polymeric backbone. Thus, the grafting approach was successfully combined with the metal–ligand coordination chemistry for the preparation of highly soluble polymeric complexes. The resulting complexes were fully characterized by means of 1H NMR, gel permeation chromatography, and ultraviolet–visible spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4838–4848, 2005  相似文献   

12.

In this study, the nine coordination polymers of Fe(III), Co(II) and Ni(II) salts have been synthesized using polyacrylamide (PAA), polt(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVA) and their structures were characterized by magnetic and conductivity measurements, ultraviolet‐visible (UV‐VIS), FTIR spectroscopy and thermogravimetric analysis (TGA). The structures of Fe(III) complexes in the all coordination polymers were found as tetrahedral. The structures of PAA‐Co(II) coordination polymer was determined as octahedral geometry whereas PEG‐Co(II) and PVA‐Co(II) complexes showed as tetrahedral structure. PAA‐Ni(II) and PEG‐Ni(II) complexes have octahedral geometry, whereas PVA‐Ni(II) has a square planar structure. Besides, the stress‐strain experiments of PVA‐metal coordination polymers obtained rubber‐like structure were carried out and the value of breaking‐strain of PVA‐Ni(II) complex was found to be about 17% of vulcanized natural rubber. The conductivities of the resulting polymer‐metal complexes were measured by four‐probe technique and were found in the range 10?5?10?6 Scm?1. Thus, it was suggested that they can be used in the field potential application of conducting polymers. TGA results revealed that among the complexes PEG‐Fe(III) and PVA‐Fe(III) complexes have the highest thermally stable.  相似文献   

13.
A copolymer of poly(methyl methacrylate) with terpyridine units in the side chains was synthesized utilizing free‐radical polymerization. The free terpyridine units were complexed with several different terpyridineruthenium mono‐complexes, yielding metallo‐supramolecular graft copolymers. The materials obtained were characterized by means of NMR and UV‐vis spectroscopy as well as GPC. Characterization by thermal analysis revealed distinct differences between these new materials and the initial copolymer.  相似文献   

14.
Bis(3-cyano-pentane-2,4-dionato) (CNacac) metal complex, [M(CNacac)(2)], which acts as both a metal-ion-like and a ligand-like building unit, forms supramolecular structures by self-assembly. Co-grinding of the metal acetates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with CNacacH formed a CNacac complex in all cases: mononuclear complex was formed in the cases of Mn(II), Cu(II) and Zn(II), whereas polymeric ones were formed in the cases of Fe(II), Co(II) and Ni(II). Subsequent annealing converted the mononuclear complexes of Mn(II), Cu(II) and Zn(II) to their corresponding polymers as a result of dehydration of the mononuclear complexes. The resultant Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) polymeric complexes had a common 3 D structure with high thermal stability. In the case of Cu(II), a 1 D polymer was obtained. The Mn(II), Cu(II) and Zn(II) polymeric complexes returned to their original mononuclear complexes on exposure to water vapour but they reverted to the polymeric complexes by re-annealing. Co-grinding of metal chlorides with CNacacH and annealing of the mononuclear CNacac complexes prepared from solution reactions were also examined for comparison. [Mn(CNacac)(2)(H(2)O)(2)], [M(CNacac)(2)(H(2)O)] (M=Cu(II) and Zn(II)) and [M(CNacac)(2)](infinity) (M=Mn(II), Fe(II) and Zn(II)) are new compounds, which clearly indicated the power of the combined mechanochemical/annealing method for the synthesis of varied metal coordination complexes.  相似文献   

15.
The two enantiomerically pure bridging ligands (+/-)-[ctpy-x-ctpy] have been prepared employing a two-fold stereospecific alkylation reaction of the enantiomerically pure, chiral terpyridyl-type ligands (+/-)-ctpy. The reaction of each of the enantiomerically pure bridging ligands with Fe(2+) gives rise to chiral coordination polymers whose formation and stoichiometry were followed spectrophotometrically. An assignment of the absolute configuration of the formed helical polymeric structures was carried out on the basis of circular dichroism studies. Highly ordered domains (as determined from STM imaging) of the enantiomerically pure chiral redox polymers could be prepared via the interfacial reaction, over an HOPG substrate, of the bridging ligand in CH(2)Cl(2) and FeSO(4) in water. The degree of polymerization was estimated to be up to 60 from analysis of the STM images of the highly ordered domains on HOPG. The helicality of the domains was compared to the configuration obtained from the circular dichroism studies. The electrochemical properties of the polymers were investigated using cyclic voltammetry and the results compared to those of the respective monomeric complexes. The redox behavior of the iron centers in the polymer was comparable to that of the monomeric complex [Fe((-)-ctpy)(2)](PF(6))(2) as well as to that of [Fe(tpy)(2)](PF(6))(2). The polymeric materials undergo electrodeposition following the two-electron reduction of each bridging ligand unit (one electron per terpyridine group). No ligand-mediated metal-metal interactions were evident from the cyclic voltammetric measurements, suggesting that the metal centers act independently. Moreover, oxidation of the metal centers within the polymeric materials did not give rise to electrodeposition.  相似文献   

16.
A new kind of dendronized polymer brush with metallo‐supramolecular polymer side chains was fabricated by a combination of macromonomer and graft‐to approach. The alternating copolymers of maleic anhydride and styryl macromonomers pendant with Fréchet‐type dendrons of three generations were reported previously. In this article, terpyridine groups were introduced along the backbone of the dendronized polymers through the amidolysis of anhydride groups. The terpyridine functionalized PEO linear chains were then incorporated through the complexation of terpyridine and Ru(II) ion. Thus, dendronized polymer brushes with amphiphilic properties were synthesized. AFM analysis showed worm‐like single molecular morphologies of the polymers of three generations, and 1H NMR analysis indicated that such molecular brushes had an amphiphilic nature in solution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3303–3310, 2007  相似文献   

17.
Spectroscopic and electrochemical characterizations of ferrocene- and biferrocene-functionalized terpyridine octanethiolate monolayer-protected clusters were investigated and reported. The electrochemical measurements of Ru2+ coordinated with 4'-ferrocenyl-2,2':6',2' '-terpyridine and 4'-biferrocenyl-2,2':6',2' '-terpyridine complexes were dominated by the Ru2+/Ru3+ redox couple (E(1/2) at approximately 1.3 V), Fe(2+)/Fe(3+) redox couples (E(1/2) from approximately 0.6 to approximately 0.9 V), and terpy/terpy-/terpy2- redox couples (E(1/)(2) at ca. -1.2 and ca. -1.4 V). The substantial appreciable variations detected in the Ru2+/Ru3+ and Fe2+/Fe3+ oxidation potentials indicate that there is an interaction between the Ru2+ and Fe2+ metal centers. The coordination of the Ru2+ metal center with 4'-ferrocenyl-2,2':6',2' '-terpyridine and 4'-biferrocenyl-2,2':6',2' '-terpyridine leads to an intense 1[(d(pi)Fe)6] --> 1[d(pi)Fe)5(pi*terpyRu)1] transition in the visible region. The 1[(d(pi)Fe)6] -->1[d(pi)Fe)5(pi*terpyRu)1] transition observed at approximately 510 nm revealed that there was a qualitative electronic coupling between metal centers. The coordination of the Ru2+ transition metal center lowers the energy of the pi*terpy orbitals, causing this transition.  相似文献   

18.
Thermogravimetric studies of the sodium salt of poly(acrylic acid), its modified sodium salt and its various metal complexes were made. The thermal stabilities of the various systems decreased in the order: poly(acrylic acid) > Ni(II) > Co(II) > Zn(II) > Fe(III) > Cu(II) > polymeric sodium salt. The higher thermal stabilities of the polymer-metal complexes result from the development of stable ring structures in the polymer matrix upon coordination with metal ions. The metal-ion complexation of carboxylate ligands of linear poly(acrylic acid), optimization of the complexation conditions and infra-red and ultraviolet-visible spectrometric characterizations are also illustrated.  相似文献   

19.
With the discovery of important biological roles of carbon monoxide (CO), the use of this gas as a therapeutic agent has attracted attention. However, the medical application of this gas has been hampered by the complexity of the administration method. To overcome this problem, several transition-metal carbonyl complexes, such as Ru(CO)(3)Cl(glycinate), [Ru(CO)(3)Cl(2)](2), and Fe(η(4)-2-pyrone)(CO)(3), have been used as CO-releasing molecules both in vitro and in vivo. We sought to develop micellar forms of metal carbonyl complexes that would display slowed diffusion in tissues and thus better ability to target distal tissue drainage sites. Specifically, we aimed to develop a new CO-delivery system using a polymeric micelle having a Ru(CO)(3)Cl(amino acidate) structure as a CO-releasing segment. The CO-releasing micelles were prepared from triblock copolymers composed of a hydrophilic poly(ethylene glycol) block, a poly(ornithine acrylamide) block bearing Ru(CO)(3)Cl(ornithinate) moieties, and a hydrophobic poly(n-butylacrylamide) block. The polymers formed spherical micelles in the range of 30-40 nm in hydrodynamic diameter. Further characterization revealed the high CO-loading capacity of the micelles. CO-release studies showed that the micelles were stable in physiological buffer and serum and released CO in response to thiol-containing compounds such as cysteine. The CO release of the micelles was slower than that of Ru(CO)(3)Cl(glycinate). In addition, the CO-releasing micelles efficiently attenuated the lipopolysaccharide-induced NF-κB activation of human monocytes, while Ru(CO)(3)Cl(glycinate) did not show any beneficial effects. Moreover, cell viability assays revealed that the micelles significantly reduced the cytotoxicity of the Ru(CO)(3)Cl(amino acidate) moiety. This novel CO-delivery system based on CO-releasing micelles may be useful for therapeutic applications of CO.  相似文献   

20.
The He(I) photoelectron spectra of acetylacetone (HAA) and its metallo complexes, M(II)(AA)2 (M(II) = Mn, Co, Ni, Cu and Zn), have been measured. These spectra show characteristic metal-dependence, from which the assignment is made. The order of the orbital energy level, d > π3 > n? > n+, holds for all the complexes reported here. The splitting of these orbitals is found to depend on the central metal ion specifically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号