首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carotenoid Glycosyl Esters. The Synthesis of Crocetin-di-(β-D -glucosyl) Ester. A New Method for the Selective Esterification of Unprotected β-D -Glucose The naturally occurring crocetin-di-(β-D -glucosyl) ester is easily synthesized by the reaction of crocetin-di-imidazolide or crocetin-di-(1,2,4-triazolide) and unprotected β-D -glucose in pyridine in presence of a base (Scheme 4). Under the described experimental conditions the esterification takes place exclusively at the anomeric C-atom and furthermore produces only the β-anomer. It is the first time that an unprotected carbohydrate has been used for the selective synthesis of glucosyl esters at the anomeric C-atom. This represents the major advantage of this new method.  相似文献   

2.
3.
3-O-Methyl-6-deoxy-D -allose (V) and its methyl β-D -pyranoside (IV) have been synthesized and obtained in a crystalline state, although in low yield, starting from methyl 6-deoxy-β-D -allopyranoside (I) via the 2,4-di-O-benzoyl derivative II.  相似文献   

4.
Carotenoid Glycosyl Esters Synthesis of β-D -Glucosyl 8′-Apo-β-carotene-8′-oate and β-D -Glucosyl Vitamin-A-oate (β-D -Glucosyl Retionate) β-D -glucosyl 8′-apo-β-carotene-8′-oate (III) and β-D -glucosyl vitamin-A-oate (VI) were regio- and stereoselectively synthesized in high yields from the N-acylimidazoles I and IV, respectively, or from the N-acyltriazoles II and V, respectively, and unprotected β-D -glucose, according to the method described for the synthesis of di(β-D -glucosyl) 8,8′-diapo-carotene-8,8′-dioate [1]. It seems that this method can generally be applied for the synthesis of β-D -glucosyl esters of polyene carboxylic acids.  相似文献   

5.
The 1H- and 13C-NMR data of the dimeric anhydride 1 of 2,3-O-isopropylidene-β-D -ribofuranose are reported together with the 1H-NOE values. The data show that the products of the polymerization of 1,5-anhydro-2,3-O-isopropylidene-β-D -ribofuranose are α- and β-D -ribofuranans and not an α-D -ribofuranan and a β-D -ribofuranan and a β D ribo-pyranan as claimed before [2] [3].  相似文献   

6.
4,2′-Anhydro-5-(β-D -arabinofuranosyl)isocytosine and 4,2′-anhydro-5-(β-D -arabinofuranosyl)-uracil were synthesized. Treatment of Ψ-isocytidine with either α-acetoxyisobutyryl chloride or salicyloyl chloride in acetonitrile afforded the acylated anhydronucleoside. Deacylation of the product with methanol-hydrogen chloride afforded 4,2′-anhydro-5-(β-D -arabinofuranosyl)isocylosine hydrochloride in crystalline form. Analogous reaction of Ψ-uridine with the acyl chloride reagents, however, always gave a mixture of the acylated anhydronucleoside and 2′-chloro-2′-deoxy-Ψ-uridine. Treatment of these products either singly or as a mixture with sodium methoxide in methanol afforded 4,2′-anhydro-5-(β-D -arabinofuranosyl)uracil in crystalline form in good yield. 5-(β-D -Arabinofuranosyl)isocytosine was obtained upon treatment of the corresponding 4,2′-anhydronucleoside with 10% sodium hydroxide under reflux for 30 minutes. Treatment of the anhydro uracil nucleoside with a small amount of Dowex 50(H+) in water at 50° gave 5-(β-D -arabinofuranosyl)uracil.  相似文献   

7.
The α-D -allo-diol 9 possesses an intramolecular H-bond (HO? C(3) to O? C(1)) in solution and in the solid state (Fig. 2). In solution, it exists as a mixture of the tautomers 9a and 9b (Fig. 3), which possess a bifurcated H-bond, connecting HO? C(2) with both O? C(1) and O? C(3). In addition, 9a possesses the same intramolecular H-bond as in the solid state, while 9b is characterized by an intramolecular H-bond between HO? C(3) and O? C(4). In solution, the β-D -anomer 12 is also a mixture of tautomers, 12a and presumably a dimer. The H-bonding in 9 and 12 is evidenced by their IR and 1H-NMR spectra and by a comparison with those of 3–8, 10 , and 11 . The expected regioselectivity of glycosidation of 9 and 12 by the diazirine 1 or the trichloroacetimidate 2 is discussed on the basis of the relative degree of acidity/nucleophilicity of individual OH groups, as governed by H-bonding. Additional factors determining the regioselectivity of glycosidation by 1 are the direction of carbene approach/proton transfer by H-bonded OH groups, and the stereoelectronic control of both the proton transfer to the alkoxy-alkyl carbene (in the σ-plane) and the combination of the thereby formed ions (π-plane of the oxycarbenium ion). Glycosidation of 9 by the diazirine 1 or the trichloroacetimidate 2 proceeded in good yields (75–94%) and with high regioselectivity. Glycosidation of 9 and 12 by 1 or 2 gave mixtures of the disaccharides 14–17 and 18–21 , respectively (Scheme 2). As expected, glycosidation of 12 by 1 or by 2 gave a nearly 1:1 mixture of regioisomers and a slight preference for the β-D -anomers (Table 4). Glycosidation of the α-D -anomer 9 gave mostly the 1,3-linked disaccharides 16 and 17 (α-D β-D ) along with the 1,2-linked disaccharides 14 and 15 (α-D < β-D , 1,2-/1,3-linked glycosides ca. 1:4), except in THF and at low temperature, where the β-D -configurated 1,2-linked disaccharide 15 is predominantly formed. Similarly, glycosidation of 9 with 2 yielded mainly the 1,3-linked disaccharides (1,2-/1,3-linked products ca. 1:3 and α-D /β-D ca. 1:4). Yields and selectivity depend upon the solvent and the temperature. The regioselectivity and the unexpected stereoselectivity of the glycosidation of 9 by 1 evidences the combined effect of the above mentioned factors, which also explain the lack of regio-complementarity in the glycosidation of 9 by 1 and by 2 (Scheme 3). THF solvates the intermediate oxycarbenium ion, as evidenced by the strong influence of this solvent on the regio- and stereoselectivity, particularly at low temperatures, where kinetic control leads to a stereoelectronically preferred axial attack of THF on the oxycarbenium ion.  相似文献   

8.
Batteries based on three-dimensional (3-D) microstructures are shown to offer significant advantages (e.g., small areal footprint, short diffusion lengths) in comparison to thin film devices for powering microelectromechanical systems and miniaturized electronic devices. A key limitation in all 3-D periodic cell architectures is the inherent non-uniform current density. Finite-element simulations of the current and potential in several cathode/anode array configurations are presented to illustrate the difficulty in obtaining relatively uniform current densities in 3-D batteries based on periodic elements.  相似文献   

9.
Structural Modification on Partially Silylated Carbohydrates by Means of Triphenylphosphine/Diethyl Azodicarboxylate Reaction of methyl 2, 6-bis-O-(t-butyldimethylsilyl)-β-D -glucopyranoside ( 1a ) with triphenylphosphine (TPP)/diethyl azodicarboxylate (DEAD) and Ph3P · HBr or methyl iodide yields methyl 3-bromo-2, 6-bis-O-(t-butyldimethylsilyl)-3-deoxy-β-D -allopyranoside ( 3a ) and the corresponding 3-deoxy-3-iodo-alloside 3c (Scheme 1). By a similar way methyl 2, 6-bis-O-(t-butyldimethylsilyl)-α-D -glucopyranoside ( 2a ) can be converted to the 4-bromo-4-deoxy-galactoside 4a and the 4-deoxy-4-iodo-galactoside 4b . In the absence of an external nucleophile the sugar derivatives 1a and 2a react with TPP/DEAD to form the 3,4-anhydro-α- or -β-D -galactosides 5 and 6a , respectively, while methyl 4, 6-bis-O-(t-butyldimethylsilyl)-β-D -glucopyranoside ( 1b ) yields methyl 2,3-anhydro-4, 6-bis-O-(t-butyldimethylsilyl)-β-D -allopyranoside ( 7a , s. Scheme 2). Even the monosilylated sugar methyl 6-O-(t-butyldimethylsilyl)-α-D -glucopyranoside ( 2b ) can be transformed to methyl 2,3-anhydro-6-O-(t-butyldimethylsilyl)-β-D -allopyranoside ( 8 ; 56%) and 3,4-anhydro-α-D -alloside 9 (23%, s. Scheme 3). Reaction of 1c with TPP/DEAD/HN3 leads to methyl 3-azido-6-O-(t-butyldimethylsilyl)-3-deoxy-β-D -allopyranoside ( 10 ). The epoxides 7 and 8 were converted with NaN3/NH4Cl to the 2-azido-2-deoxy-altrosides 11 and 13 , respectively, and the 3-azido-3-deoxy-glucosides 12 and 14 , respectively (Scheme 4 and 5). Reaction of 7 and 8 with TPP/DEAD/HN3 or p-nitrobenzoic acid afforded methyl 2,3-anhydro-4-azido-6-O-(t-butyldimethylsilyl)-4-deoxy-α- and -β-D -gulopyranoside ( 15 and 17 ), respectively, or methyl 2,3-anhydro-6-O-(t-butyldimethylsilyl)-4-O-(p-nitrobenzoyl)-α- and -β-D -gulopyranoside ( 16 and 18 ), respectively, without any opening of the oxirane ring (s. Scheme 6). - The 2-acetamido-2-deoxy-glucosides 19a and 20a react with TPP/DEAD alone to form the corresponding methyl 2-acetamido-3,4-anhydro-6-O-(t-butyldimethylsilyl)-2-deoxy-galactopyranosides ( 21 and 22 ) in a yield of 80 and 85%, respectively (Scheme 7). With TPP/DEAD/HN3 20a is transformed to methyl 2-acetamido-3-azido-6-O-(t-butyldimethylsilyl)-2,3-didesoxy-β-D -allopyranoside ( 25 , Scheme 8). By this way methyl 2-acetamido-3,6-bis-O-(t-butyldimethylsilyl)-α-D -glucopyranoside ( 19b ) yields methyl 2-acetamido-4-azido-3,6-bis-O-(t-butyldimethylsilyl)-2,4-dideoxy-α-D -galactopyranoside ( 23 ; 16%) and the isomerized product methyl 2-acetamido-4,6-bis-O-(t-butyldimethylsilyl)-2-deoxy-α-D -glucopyranoside ( 19d ; 45%). Under the same conditions the disilylated methyl 2-acetamido-2-deoxy-glucoside 20b leads to methyl 2-acetamido-4-azido-3,6-bis-O-(t-butyldimethylsilyl)-2,4-dideoxy-β-D -galactopyranoside ( 24 ). - All Structures were assigned by 1H-NMR. analysis of the corresponding acetates.  相似文献   

10.
Docking simulation and three-dimensional quantitative structure-activity relationships (3D-QSARs) analyses were conducted on four series of HDAC inhibitors. The studies were performed using the GRID/GOLPE combination using structure-based alignment. Twelve 3-D QSAR models were derived and discussed. Compared to previous studies on similar inhibitors, the present 3-D QSAR investigation proved to be of higher statistical value, displaying for the best global model r2, q2, and cross-validated SDEP values of 0.94, 0.83, and 0.41, respectively. A comparison of the 3-D QSAR maps with the structural features of the binding site showed good correlation. The results of 3D-QSAR and docking studies validated each other and provided insight into the structural requirements for anti-HDAC activity. To our knowledge this is the first 3-D QSAR application on a broad molecular diversity training set of HDACIs.  相似文献   

11.
The conformational space of the trisaccharide α-L -Fuc-(1→2)-β- D -Gal-(1→3)-β -D -GalNAc-1-OPr ( 2 ) and of its component disaccharide moieties α -L -Fuc-(1→2)-β -D -Gal-1-OMe ( 3 ) and β -D -Gal-(1→3)-β- D -GalNAc-1-OPr ( 4 ) was investigated with the aid of molecular-mechanics energy minimizations and molecular-dynamics simulations. These calculations suggested the occurrence of two conformations for each compound characterized by different ? and Ψ glycosidic angles. However, 1H-NMR investigation of D2O solutions of 2–4 indicated a sure preference for one of the two conformers with a contribution of the other one ranging from negligible to low.  相似文献   

12.
3-D electrode designs for flow-through dielectrophoretic systems   总被引:3,自引:0,他引:3  
Park BY  Madou MJ 《Electrophoresis》2005,26(19):3745-3757
Traditional methods of dielectrophoretic separation using planar microelectrodes have a common problem: the dielectrophoretic force, which is proportional to nabla|E|2, rapidly decays as the distance from the electrodes increases. Recent advances in carbon microelectromechanical systems have allowed researchers to create carbon 3-D structures with relative ease. These developments have opened up new possibilities in the fabrication of complex 3-D shapes. In this paper, the use of 3-D electrode designs for high-throughput dielectrophoretic separation/concentration/filtration systems is investigated. 3-D electrode designs are beneficial because (i) they provide a method of extending the electric field within the fluid. (ii) The 3-D electrodes can be designed so that the velocity field coincides with the electric field distribution. (iii) Novel electrode designs, not based on planar electrodes designs, can be developed and used. The electric field distribution and velocity fields of 3-D electrode designs that are simple extensions of 2-D designs are presented, and two novel electrode designs that are not based on 2-D electrode designs are introduced. Finally, a proof-of-concept experimental device for extraction of nanofibrous carbon from canola oil is demonstrated.  相似文献   

13.
A number of 1,6-anhydrides were polymerized in the melt at 115°C by use of monochloroacetic acid as catalyst. In the early stages of polymerization (up to 40–50% monomer consumed), each monomer was found to disappear by a first-order rate process. The 1,6-anhydrides investigated and their relative rates of polymerization were: 1,6-anhydro-2-O-methyl-β-D -glucopyranose, 1.0; 1,6-anhydro-3,4-di-O-methyl-β-D -glucopyranose, 1.4; 1,6-anhydro-2-O-methyl-β-D -galactopyranose, 2.3; 1,6-anhydro-3-O-methyl-β-D -glucopyranose, 2.6; 1,6-anhydro-4-O-methyl-β-D -glucopyranose, 6.3; 1,6-anhydro-4-O-(β-D -glucopyranosyl) β-D -glucopyranose, 9.0; 1,6-anhydro-β-D -galactopyranose, 17; 1,6-anhydro-β-D -glucopyranose, 37; 1,6-anhydro-β-D -mannopyranose, 91; and 1,6-anhydro-2-deoxy-β-D -arabino-hexopyranose, 240. The effect of substitution on the rate of polymerization suggests this reaction is mechanistically related to the acid hydrolysis of pyranosides. The results suggest that polymerization proceeds in two stages: (1) an initial build-up of dimer followed by (2) a slower growth to higher molecular weight material.  相似文献   

14.
1-(2′-Deoxy-5′-O-dimethoxytrityl-′-D -ribofuranosyl)-1 H-benzimidazole 3′-[(p-chlorophenyl)(2-cyanoethyl) phosphate] ( 6 ) has been synthesized from 1-(β-D -ribofuranosyl)-1H-benzimidazole ( 3b ) using regiospecific 2′-deoxygenation. The latter compound was obtained by glycosylation of benzimidazole with the D -ribose derivative 2 leading exclusively of the β-D -anomer.  相似文献   

15.
Nucleobase-anion glycosylation (KOH, tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1), MeCN) of the pyrrolo[2,3-d]pyrimidines 4a – d with 5-O-[(1,1-dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-α-D -ribo-furanosyl chloride ( 5 ) gave the protected β-D -nucleosides 6a – d stereoselectively (Scheme 1). Contrary, the β-D -halogenose 8 yielded the corresponding α-D -nucleosides ( 9a and 9b ) apart from minor amounts of the β-D -anomers. The deprotected nucleosides 10a and 11a were converted into 4-substituted 2-aminopyrrolo[2,3-d]-pyrimidine β-D -ribofuranosides 1 . 10c , 12 , 14 , and 16 and into their α-D -anomers, respectively (Scheme 2). From the reaction of 4b with 5 , the glycosylation product 7 was isolated, containing two nucleobase moieties.  相似文献   

16.
Pachybiose (1) is shown to be 4-O-(3-O-methyl-6-deoxy-β-D -allopyranosyl)-D -oleandrose and asclepobiose (14) 4-O-(3-O-methyl-6-deoxy-β-D -allopyranosyl)-D -cymarose.  相似文献   

17.
The cis and trans isomers of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methylthiomethylene-α-D -xylo- and -α-D -ribo-hexofuranoses have been prepared by treatment of 1,2:5,6-di-O-isopropylidene-α-D -xylo- and -α-D -ribo-hexofuran-3-uloses with methylthiomethylene-triphenylphosphorane. Configurations are assigned by NMR. A new type of 4J is described. Hydrogenation-desulfurization of the methylthiovinylic sugars affords 3-deoxy-3-methyl sugars of the D -allo, D -gulo, and D -galacto series. Derivatives of 3-deoxy-3-methyl-D -lyxose and 3-deoxy-3-methyl-D -ribose are prepared by chain-shortening of derivatives of the corresponding 3-deoxy-3-methyl-hexoses.  相似文献   

18.
A new three-dimensional (3-D) jungle-gym-like open metal-organic framework has been synthesized from a two-dimensional (2-D) layer compound using a heterogeneous pillar insertion reaction. Both the starting 2-D layer and the resulting 3-D open compounds have been characterized using X-ray crystallography.  相似文献   

19.
One important difference between the results of collinear and of full 3-D dynamical computations arises from the difference in the available volume in phase space (1-D versus 3-D) which can be termed a “dimensionality-bias”. Correction for this phase space factor allows for a more realistic estimate of reaction cross sections, branching ratios and 3-D product energy distributions from collinear calculations.  相似文献   

20.
Tetramerization of coil-rod-coil ABC triblock copolymers to a tetrabranched molecule induces an unusual 3-D tetragonally perforated layered liquid crystalline phase as an intermediate structure between 1-D lamellar and 2-D hexagonal columnar phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号