首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glasses with compositions 41CaO(52 − x)SiO24P2O5·xFe2O33Na2O (2 ≤ x ≤ 10 mol.%) were prepared by melt quenching method. Bioactivity of the different glass compositions was studied in vitro by treating them with simulated body fluid (SBF). The glasses treated for various time periods in SBF were evaluated by examining apatite formation on their surface using grazing incidence X-ray diffraction, Fourier transform infrared reflection spectroscopy, scanning electron microscopy and energy dispersive spectroscopy techniques. Increase in bioactivity with increasing iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass composition.  相似文献   

2.
In the present work different optical properties of xTiO2-(60 − x)SiO2-40Na2O (wt%) optical glasses are determined. The characterization is done over a wide energy range, 0.41-6.2 eV. The refractive index and the extinction coefficient data are used to measure the absorption coefficient of the different glass compositions. Studying the UV-absorption edge, both direct and indirect allowed transitions with their optical energy gaps are carried out. In the same time, the Urbach energy is evaluated. From the extinction coefficient data, the Fermi energy of the glasses is calculated. The molar refraction, electronic polarizability and the optical basicity are obtained using the measured glass refractive indices.  相似文献   

3.
Solid solutions of manganese(II)-doped magnesium pyroborate, ((Mg1−xMnx)2B2O5, 0<x≤0.30, triclinic system, space group: P1¯ (no. 2)), were synthesized by solid state reaction. The unit cell parameters were refined by the Rietveld method of powder X-ray diffraction patterns. (Mg1−xMnx)2B2O5 showed broad red emission at 670 nm under 414 nm excitation. The wavelengths of the emission peak did not depend on the manganese content. Absorption of the d-d transitions of Mn2+ ions was observed in the photoluminescence excitation spectra. The emission intensity reached the maximum at a Mn content (x) of 0.05 and decreased with increasing x from 0.05 to 0.30.  相似文献   

4.
Se90Te10−xAgx (0 ≤ x ≤ 6) compositions were prepared by quenching technique. Thin films with different thicknesses of the obtained compositions were deposited on dry clean glass substrates by thermal evaporation technique. Energy dispersive X-ray spectroscopy (EDX) indicates that samples are nearly stoichiometric. X-ray diffraction patterns indicate that they are in the amorphous state. The optical constants, the refractive index n and the absorption index k, have been calculated from transmittance T and reflectance R through the spectral range of 400-2500 nm for the studied films with different thicknesses (165-711 nm). From the analysis of refractive index n data, high frequency dielectric constant ? was determined. Both ? and n are found to decrease with the increase of Ag content. The optical band gap is calculated for all compositions from the absorption coefficient analysis. The effect of the Ag addition on the obtained optical parameters has been discussed. The analysis of absorption index k data, revealed the existence of allowed indirect transitions for all compositions. It is indicated also that increase with increasing Ag content.  相似文献   

5.
Thin films of YCa4O(BO3)3 (YCOB)-based new luminescent materials were explored by the combinatorial pulsed laser deposition (PLD) method which enabled us to fabricate continuous composition spread film libraries. Strong red and green luminescence were found in the Y1−xEuxCOB (0 ≤ x ≤ 1), (YEuCOB) and Y1−yTbyCOB (0 ≤ y ≤ 1) (YTbCOB) films, respectively. The film libraries were characterized by photoluminescence (PL), PL decay, an electron-probe microanalyzer and an electron diffraction analysis. The luminescent intensities in the amorphous film libraries strongly depended on the chemical composition of each rare-earth (RE) ion. The optimum concentration of rare-earth ions in YEuCOB and YTbCOB were experimentally determined to be Eu = 7.5% and Tb = 20-30%, respectively.  相似文献   

6.
Melt spun Ni50−xMn37+xIn13 (2≤x≤5) ribbons were investigated for the structure, microstructure, magneto-structural transitions and inverse magnetocaloric effect (IMCE) associated with the first-order martensitic phase transition. The influence of excess Mn in Ni site (or Ni/Mn content) on the martensite transition and the associated magnetic and magnetocaloric properties are discussed. It was found that with the increase in Mn content, the martensitic transition shifted from 325 to 240 K as x is varied from 2 to 4, and the austenite phase was stabilized at room temperature. The x=5 ribbon did not show the martensitic transition. For the x=3 ribbon, the structural and magnetic transitions are close together unlike in the x=4 ribbon in which they are far (∼60 K) apart. The zero field cooled and field cooled curves support the presence of exchange bias blocking temperature due to antiferromagnetic interactions in the ribbons. A large change in the magnetization between the martensite and austenite phases was observed for a small variation in the Ni/Mn content, which resulted in large IMCE. A large positive magnetic entropy change (ΔSM) of 32 J/kg K at room temperature (∼ 300 K) for a field change of 5 T with a net refrigeration capacity of 64 J/kg was obtained in the Ni47Mn40In13 ribbon.  相似文献   

7.
Ba(1−x)LaxFe12O19 (0.00≤x≤0.10) nanofibers were fabricated via the electrospinning technique followed by heat treatment at different temperatures for 2 h. Various characterization methods including scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and microwave vector network analyzer were employed to investigate the morphologies, crystalline phases, magnetic properties, and complex electromagnetic parameters of nanofibers. The SEM images indicate that samples with various values of x are of a continuous fiber-like morphology with an average diameter of 110±20 nm. The XRD patterns show that the main phase is M-type barium hexaferrite without other impurity phases when calcined at 1100 °C. The VSM results show that coercive force (Hc) decreases first and then increases, while saturation magnetization (Ms) reveals an increase at first and then decreases with La3+ ions content increase. Both the magnetic and dielectric losses are significantly enhanced by partial substitution of La3+ for Ba2+ in the M-type barium hexaferrites. The microwave absorption performance of Ba0.95La0.05Fe12O19 nanofibers gets significant improvement: The bandwidth below −10 dB expands from 0 GHz to 12.6 GHz, and the peak value of reflection loss decreases from −9.65 dB to −23.02 dB with the layer thickness of 2.0 mm.  相似文献   

8.
Chalcogenide glasses are interesting materials due to their infrared transmitting properties and photo induced effects exhibited by them. Thin films with thickness of 3000 Å of the glasses Se75S25−xCdx with x=6, 8 and 10 at% prepared by melt quench technique were evaporated by thermal evaporation onto glass substrates under a vacuum of 10−6 Torr. The optical constants (absorption coefficient, refractive index and extinction coefficient) of as-prepared and annealed films have been studied as a function of photon energy in the wave length region 400-1000 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been found that the absorption coefficient and optical band gap increase with increasing annealing temperatures. The refractive index (n) and the extinction coefficient (k) were observed to decrease with increasing annealing temperature.  相似文献   

9.
Structure and electrical behaviour are reported for the system Bi1-xTaxO1.5 + x (0.167 ≤ x ≤ 0.250). In the compositional range 0.200 < x ≤ 0.250 an incommensurately modulated pseudo-cubic phase (type II) is observed, with the appearance of a larger pseudo-cubic phase in the region 0.167 ≤ x ≤ 0.200. Structural analysis of the type II phases by neutron diffraction reveals subtle changes in the oxide ion distribution with temperature, associated with changes in the incommensurate modulation parameter. Analysis of the defect structure of the type II phase reveals chains of tantalate octahedra as a likely structural motif. It is proposed that these chains facilitate an electronic contribution to total conductivity at low temperatures through electron hopping along the chains. Changes in oxide ion vacancy ordering may explain the observed non-linear behaviour in the thermal expansion of lattice parameter and Arrhenius plots of total conductivity.  相似文献   

10.
The glasses of the composition (40−x) PbO-15Bi2O3-45As2O3-xCoO, with 0≤x≤0.6 mol% in the steps of 0.1 were synthesized. The dielectric properties viz., dielectric constant, loss and ac conductivity over moderately larger ranges of frequency and temperature were investigated. The results were analyzed with the aid of the data on optical absorption and IR spectra. The analysis indicated that there is an increase in the insulating strength of the glasses with increase in the concentration of CoO up to 0.4 mol%.  相似文献   

11.
We report the resistivity (ρ)-temperature (T) patterns in (1-x)La0,7Ca0,3MnO3+xAl2O3 composites (0≤x≤0.05) over a temperature regime of 50-300 K. Al2O3 addition has increased the resistivity of these composites. The Curie temperature (TC) is almost independent on the Al2O3 content and is about 250 K for all the samples, while the metal-insulator transition temperature (TMI) decreases with increasing Al2O3 content. Based on the phenomenological equation for conductivity under a percolation approach, which is dependent on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental data (ρT) from 50 to 300 K and find that the activation barrier increases as Al2O3 content increases.  相似文献   

12.
Pure VO2 and VO2-WO3 composite thin films were grown on quartz substrate by pulsed laser deposition (PLD) technique. The influence of varying WO3 molar concentration in the range from x = 0.0 to x = 0.4 on structural, electrical and optical properties of VO2-WO3 nanocomposite thin films has been systematically investigated. X-ray diffraction studies reveal the single crystalline monoclinic VO2 phase (m-VO2) up to 10% of WO3 content whereas both m-VO2 as well as h-WO3 (hexagonal WO3) phases were present at higher WO3 content (0.2 ≤ x ≤ 0.4). Optical transmittance spectra of the films showed blue shift in the absorption edge with increase in WO3 content. Temperature dependence of resistivity (R-T) measurements indicates significant variation in metal-insulator transition temperature, width of the hysteresis, and shape of the hysteresis curve. Cyclic Voltammetry measurements were performed on VO2-WO3 thin films. A direct correlation between V/W ratio and structure-property relationship was established. The present investigations reveal that doping of WO3 in VO2 is effective to increase the optical transmittance and to reduce the semiconductor to metal phase transition temperature close to room temperature.  相似文献   

13.
Glasses with composition x(ZnO,Fe2O3)(65 − x)SiO220(CaO,P2O5)15Na2O (6 ≤ x ≤ 21 mol%) were prepared by melt-quenching technique. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations nearly equal to those in human blood plasma. Formation of bioactive apatite layer on the samples treated in SBF was confirmed by using Fourier transform infrared reflection (FTIR) spectroscopy, grazing incidence X-ray diffraction (GI-XRD) and scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer. Development of an apatite structure on the surface of the SBF treated glass samples as functions of composition and time could be established using the GI-XRD data. FTIR spectra of the glasses treated in SBF show features at characteristic vibration frequencies of apatite after 1-day of immersion in SBF. SEM observations revealed that the spherical particles formed on the glass surface were made of calcium and phosphorus with the Ca/P molar ratio being close to 1.67, corresponding to the value in crystalline apatite. Increase in bioactivity with increasing zinc-iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of glass composition and immersion time in SBF.  相似文献   

14.
A novel long-lasting phosphorescence phosphor, Mn2+-activated Mg2SnO4, has been synthesized and its optical properties have been investigated. The Mg2SnO4:Mn2+ emits green light with high luminance, upon UV irradiation, centered at 499 nm from the spin forbidden transitions of the d-electrons in Mn2+ ions. The CIE chromaticity coordinates of the Mg2SnO4:Mn2+ phosphor are x=0.0875 and y=0.6083 under 254 nm UV excitation. The phosphorescence can be observed by the naked eyes (0.32 mcd/m2) in the dark clearly for over 5 h after the 5 min UV irradiation. Thermoluminescence has been studied and the mechanism of the long-lasting phosphorescence has been discussed.  相似文献   

15.
The photoluminescence properties of Y1−x(PO3)3:xEu3+ (0<x≤0.2) are investigated. The excitation spectrum of Y0.85(PO3)3:0.15Eu3+ shows that both the (PO3)33− groups and the CT bands of O2−-Y3+ can efficiently absorb the excitation energy in the region of 120-250 nm. Under 147 nm excitation, the optimal emissive intensity of Y1−x(PO3)3:xEu3+ (0<x≤0.2) is about 36% of the commercial phosphor (Y,Gd)BO3:Eu3+, which hints that the absorbed energy by the host matrix could be efficiently transferred to Eu3+. We try to study the concentration quenching mechanism of Y1−x(PO3)3:xEu3+ (0<x≤0.2) under 147 and 172 nm excitation.  相似文献   

16.
Thermoelectric properties of single crystalline CexSr1−xTiO3 films (0 ≤ x ≤ 0.5) have been studied by using combinatorial pulsed-laser deposition. Temperature gradient method was used for identifying an optimum growth temperature for SrTiO3 homoepitaxial growth, at which both oxygen stoichiometry and persisting layer-by-layer growth mode could be accomplished. Electrical conductivity (σ) and Seebeck coefficient (S) were measured at room temperature for the composition-spread films grown at the optimized temperature and found to be considerably higher than those reported for bulk poly-crystalline compounds. Hall measurement revealed that carrier density linearly increased with increasing x, suggesting that a trivalent Ce ions substituted divalent Sr ions to supply electrons. A maximum power factor (S2σ) was obtained for the x = 0.2 film, being 7 and 14 μW/K2 cm at 300 and 900 K, respectively.  相似文献   

17.
Oxonitridosilicate phosphors with compositions of (Y1−xCex)2Si3O3N4 (x=0−0.2) have been synthesized by solid state reaction method. The structures and photoluminescence properties have been investigated. Ce3+ ions have substituted for Y3+ ions in the lattice. The emission and excitation spectra of these phosphors show the characteristic photoluminescence spectra of Ce3+ ions. Based on the analyses of the diffuse reflection spectra and the PL spectra, a systematic energy diagram of Ce3+ ion in the forbidden band of sample with x=0.02 is given. The best doping Ce content in these phosphors is ∼2 mol%. The quenching temperature is ∼405 K for the 2 mol% Ce content sample. The luminescence decay properties were investigated. The primary studies indicate that these phosphors are potential candidates for application in three-phosphor-converted white LEDs.  相似文献   

18.
The effects of Mn substitutions on the crystal structure, magnetic properties, and magnetocaloric effect (MCE) of antiperovskite Sn1−xCMn3+x (0≤x≤0.40) have been investigated detailedly. Both the Curie temperature (TC) and the magnetizations at 40 kOe decrease with increasing x firstly for x≤0.10, and then increase with increasing x further. The type of magnetic transition changes from first-order to second-order around x=0.10 with increasing x. Chemical composition-dependent MCE is also studied around TC. With increasing x, the maximal magnetic entropy changes decrease and the magnetic phase transitions broaden. Accordingly, the relative cooling power (RCP) increases with increasing x, reaching the largest values of ∼0.56 J/cm3 (∼75 J/kg) and ∼1.66 J/cm3 (∼221 J/kg) with the magnetic changes of 20 kOe and 48 kOe, respectively. Considering the large RCP, inexpensive, and innoxious raw materials, these serial samples Sn1−xCMn3+x are suggested to be potential room-temperature magnetic refrigerant materials.  相似文献   

19.
Lead-free (K0.5Na0.5)0.90Li0.06Sr0.02Nb(1−x)SbxO3 (KNLSN-Sbx) ceramics were synthesized by ordinary sintering technique. The compositional dependence of phase structure and electrical properties of the ceramics was systematically investigated. All samples possessed pure perovskite structure, showing room temperature symmetries of orthorhombic at x<0.01, coexistence of orthorhombic and tetragonal phases at x=0.01, and tetragonal at 0.02≤x≤0.05. The temperature of the polymorphic phase transition (PPT) was shifted to lower temperature and dielectric relaxor behavior was induced by increasing Sb content. The samples near the coexistence region (x=0.01) exhibited enhanced electrical properties: d33∼145 pC/N, kp∼38% and Pr∼20.4 μC/cm2.  相似文献   

20.
In this study, effect of lanthanum substitution on the phase composition, lattice parameters and magnetic properties of barium hexaferrite has been studied in samples synthesized in ammonium nitrate melt. Samples, prepared with different lanthanum amount and having various initial Fe/(Ba+La) ratios in between 12 and 2 {(Ba1−xLaxn Fe2O3, where 0≤x≤1 and 1≤n≤6)}, are sintered at temperatures from 800 to 1200 °C. The lattice parameters, both a and c, decreases with increasing La amount which results in a decrease of the unit cell volume. The scanning electron microscope micrographs show that the pure and La-substituted sample with x=0.3, both calcinated at 1000 °C, have grain sizes smaller than 1 μm. The coercivities of the La-substituted samples increase with increasing La amount and reaches to a maximum value of 5.73 kOe, when x=0.3. Sintering at higher temperatures (above 1000 °C) decreases the coercivity, resembling a transition from single to multi-domain behavior of the particles, while saturation magnetization of the samples continues to increase due to the increasing grain size. Magnetization measurements of the samples prepared with different Fe/(Ba+La) molar ratios, n's, revealed that the specific saturation magnetization slightly increases with decreasing n, while coercivities fluctuates around 5.5 kOe. However, a sharp increase in the saturation magnetization has been observed in the sample having n=1 and washed in HCl. It was measured as 59.2 emu/g at 15 kOe, which is higher than that of the pure sample (57.5 emu/g). Thus, the magnetic parameters are optimized in the sample Ba0.7La0.3Fe12O19 so as to maximize both coercivity and specific saturation magnetization in the HCl-washed sample synthesized by starting with an unusually low Fe/(Ba+La) molar ratio of 2 (or n=1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号