首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Very efficient interstrand communication systems in nucleic acid duplexes, based on pyrene excimer formation between 2'-N-(pyren-1-yl)methyl-2'-amino-LNA monomers, demonstrate the versatility of functionalized 2'-amino-LNA monomers for Angstrom-scale chemical engineering.  相似文献   

2.
The DNA probes (ODNs) containing a 2'-N-(pyren-1-yl)-group on the conformationally locked nucleosides [2'-N-(pyren-1-yl)carbonyl-azetidine thymidine, Aze-pyr (X), and 2'-N-(pyren-1-yl)carbonyl-aza-ENA thymidine, Aza-ENA-pyr (Y)], show that they can bind to complementary RNA more strongly than to the DNA. The Aze-pyr (X) containing ODNs with the complementary DNA and RNA duplexes showed an increase in the fluorescence intensity (measured at lambda em approximately 376 nm) depending upon the nearest neighbor at the 3'-end to X [dA ( approximately 12-20-fold) > dG ( approximately 9-20-fold) > dT ( approximately 2.5-20-fold) > dC ( approximately 6-13-fold)]. They give high fluorescence quantum yields (Phi F = 0.13-0.89) as compared to those of the single-stranded ODNs. The Aza-ENA-pyr (Y)-modified ODNs, on the other hand, showed an enhancement of the fluorescence intensity only with the complementary DNA (1.4-3.9-fold, Phi F = 0.16-0.47); a very small increase in fluorescence is also observed with the complementary RNA (1.1-1.7-fold, Phi F = 0.17-0.22), depending both upon the site of the Y modification introduced as well as on the chemical nature of the nucleobase adjacent to the modification site into the ODN. The fluorescence properties, thermal denaturation experiments, absorption, and circular dichroism (CD) studies with the X- and Y-modified ODNs in the form of matched homo- and heteroduplexes consistently suggested (i) that the orientation of the pyrene moiety is outside the helix of the nucleic acid duplexes containing a dT-d/rA base pair at the 3'-end of the modification site for both X and Y types of modifications, and (ii) that the microenvironment around the pyrene moiety in the ODN/DNA and ODN/RNA duplexes is dictated by the chemical nature of the conformational constraint in the sugar moiety, as well as by the nature of neighboring nucleobases. The pyrene fluorescence emission in both X and Y types of the conformationally restricted nucleotides is found to be sensitive to a mismatched base present in the target RNA: (i) The X-modified ODN showed a decrease ( approximately 37-fold) in the fluorescence intensity (measured at lambda em approximately 376 nm) upon duplex formation with RNA containing a G nucleobase mismatch (dT-rG pair instead of dT-rA) opposite to the modification site. (ii) In contrast, the Y-modified ODN in the heteroduplex resulted in a approximately 3-fold increase in the fluorescence intensity upon dT-rG mismatch, instead of matched dT-rA pair, in the RNA strand. Our data corroborate that the pyrene moiety is intercalated in the X-modified mismatched ODN/RNA (G mismatch) heteroduplex as compared to that of the Y-modified ODN/RNA (G mismatch) heteroduplex, in which it is located outside the helix.  相似文献   

3.
N2'-Pyrene-functionalized 2'-amino-α-L-LNAs (locked nucleic acids) display extraordinary affinity toward complementary DNA targets due to favorable preorganization of the pyrene moieties for hybridization-induced intercalation. Unfortunately, the synthesis of these monomers is challenging (~20 steps, <3% overall yield), which has precluded full characterization of DNA-targeting applications based on these materials. Access to more readily accessible functional mimics would be highly desirable. Here we describe short synthetic routes to a series of O2'-intercalator-functionalized uridine and N2'-intercalator-functionalized 2'-N-methyl-2'-aminouridine monomers and demonstrate, via thermal denaturation, UV-vis absorption and fluorescence spectroscopy experiments, that several of them mimic the DNA-hybridization properties of N2'-pyrene-functionalized 2'-amino-α-L-LNAs. For example, oligodeoxyribonucleotides (ONs) modified with 2'-O-(coronen-1-yl)methyluridine monomer Z, 2'-O-(pyren-1-yl)methyluridine monomer Y, or 2'-N-(pyren-1-ylmethyl)-2'-N-methylaminouridine monomer Q display prominent increases in thermal affinity toward complementary DNA relative to reference strands (average ΔT(m)/mod up to +12 °C), pronounced DNA-selectivity, and higher target specificity than 2'-amino-α-L-LNA benchmark probes. In contrast, ONs modified with 2'-O-(2-napthyl)uridine monomer W, 2'-O-(pyren-1-yl)uridine monomer X or 2'-N-(pyren-1-ylcarbonyl)-2'-N-methylaminouridine monomer S display very low affinity toward DNA targets. This demonstrates that even conservative alterations in linker chemistry, linker length, and surface area of the appended intercalators have marked impact on DNA-hybridization characteristics. Straightforward access to high-affinity building blocks such as Q, Y, and Z is likely to accelerate their use in DNA-targeting applications within nucleic acid based diagnostics, therapeutics, and material science.  相似文献   

4.
Oligonucleotides (ONs) modified with a 2'-N-(pyren-1-yl)acetyl-2'-amino-alpha-L-LNA thymine monomer Y flanked on the 3'-side by an abasic site Phi (i.e., YPhi-unit) exhibit unprecedented increases in thermal affinity (DeltaT(m) values) toward target strands containing abasic sites (DeltaT(m) per YPhi unit >+33.0 degrees C in 9-mer duplexes relative to unmodified ONs). Biophysical studies along with force field calculations suggest that the conformationally locked 2-oxo-5-azabicyclo[2.2.1]heptane skeleton of monomer Y, in concert with the short rigid acetyl linker, efficiently forces the thymine and pyrene moieties to adopt an interplanar distance of approximately 3.4 A. This precisely positions the pyrene moiety in the duplex core void formed by abasic sites (Phi:Phi pair) for optimal pi-pi overlap. Duplexes with multiple YPhi: APhi units separated by one base pair are tolerated extraordinarily well, as exemplified by a 13-mer duplex containing four separated YPhi: APhi units (8 abasic sites distributed over 13 "base pairs"), which exhibit a thermal denaturation temperature of 60.5 degrees C. The YPhi probes display up to 16-fold increases in fluorescence intensity at 380 nm upon hybridization with abasic target strands, whereby self-assembly of these complex architectures can be easily monitored. This study underlines the potential of N2'-functionalized 2'-amino-alpha-L-LNA as building blocks in nucleic acid based diagnostics and nanomaterial engineering.  相似文献   

5.
9-Mer DNA sequences containing 2'-N-methyl-2'-N-(pyren-1-ylmethyl)-2'-amino-DNA monomers display significantly increased affinity towards DNA complements whereas the corresponding 2'-amino-DNA monomer has a detrimental effect on duplex stability. These effects are efficiently reversed by incorporation of four LNA nucleotides inducing a B-DNA to A-DNA conformational change.  相似文献   

6.
The synthesis of 2'-amino-LNA (the 2'-amino derivative of locked nucleic acid) has opened up a number of exciting possibilities with respect to modified nucleic acids. While maintaining the excellent duplex stability inferred by LNA-type oligonucleotides, the nitrogen in the 2'-position of 2'-amino-LNA monomers provides an excellent handle for functionalisation. Herein, the synthesis of amino acid functionalised 2'-amino-LNA derivatives is described. Following ON synthesis, a glycyl unit attached to the N2'-position of 2'-amino-LNA monomers was further acylated with a variety of amino acids. On binding to DNA/RNA complements, the modified ONs induce a marked increase in thermal stability, which is particularly apparent in a buffer system with a low salt concentration. The increase in thermal stability is thought to be caused, at least in part, by decreased electrostatic repulsion between the negatively charged phosphate backbones when positively charged amino acid residues are appended. Upon incorporation of more than one 2'-amino-LNA modification, the effects are found to be nearly additive. For comparison, 2'-amino-LNA derivatives modified with uncharged groups have been synthesised and their effect on duplex thermal stability likewise investigated.  相似文献   

7.
Development of universal hybridization probes, that is, oligonucleotides displaying identical affinity toward matched and mismatched DNA/RNA targets, has been a longstanding goal due to potential applications as degenerate PCR primers and microarray probes. The classic approach toward this end has been the use of "universal bases" that either are based on hydrogen-bonding purine derivatives or aromatic base analogues without hydrogen-bonding capabilities. However, development of probes that result in truly universal hybridization without compromising duplex thermostability has proven challenging. Here we have used the "click reaction" to synthesize four C2'-pyrene-functionalized triazole-linked 2'-deoxyuridine phosphoramidites. We demonstrate that oligodeoxyribonucleotides modified with the corresponding monomers display (a) minimally decreased thermal affinity toward DNA/RNA complements relative to reference strands, (b) highly robust universal hybridization characteristics (average differences in thermal denaturation temperatures of matched vs mismatched duplexes involving monomer W are <1.7 °C), and (c) exceptional affinity toward DNA targets containing abasic sites opposite of the modification site (ΔT(m) up to +25 °C). The latter observation, along with results from absorption and fluorescence spectroscopy, suggests that the pyrene moiety is intercalating into the duplex whereby the opposing nucleotide is pushed into an extrahelical position. These properties render C2'-pyrene-functionalized triazole-linked DNA as promising universal hybridization probes for applications in nucleic acid chemistry and biotechnology.  相似文献   

8.
Molecular beacon DNA probes, containing 1-4 pyrene monomers on the 5' end and the quencher DABCYL on the 3' end, were engineered and employed for real-time probing of DNA sequences. In the absence of a target sequence, the multiple-pyrene labeled molecular beacons (MBs) assumed a stem-closed conformation resulting in quenching of the pyrene excimer fluorescence. In the presence of target, the beacons switched to a stem-open conformation, which separated the pyrene label from the quencher molecule and generated an excimer emission signal proportional to the target concentration. Steady-state fluorescence assays resulted in a subnanomolar limit of detection in buffer, whereas time-resolved signaling enabled low-nanomolar target detection in cell-growth media. It was found that the excimer emission intensity could be scaled by increasing the number of pyrene monomers conjugated to the 5' terminal. Each additional pyrene monomer resulted in substantial increases in the excimer emission intensities, quantum yields, and excited-state lifetimes of the hybridized MBs. The long fluorescence lifetime ( approximately 40 ns), large Stokes shift (130 nm), and tunable intensity of the excimer make this multiple-pyrene moiety a useful alternative to traditional fluorophore labeling in nucleic acid probes.  相似文献   

9.
Functionalisation of 2'-amino-LNA oligonucleotides with 1-, 2- and 4-(phenylethynyl)pyrene fluorophores via a carbonyl linker (PEPyc) resulted in efficient interstrand communication systems in nucleic acid duplexes, providing effective tools for stabilization of nanostructures and fluorescence monitoring of DNA self-assembly.  相似文献   

10.
A highly efficient method for postsynthetic modification of unprotected oligonucleotides incorporating internal insertions of (R)-1-O-(4-ethynylbenzyl)glycerol has been developed through the application of click chemistry with water-insoluble pyren-1-yl azide and water-soluble benzyl azide and acceleration by microwave irradiation. The twisted intercalating nucleic acids (TINAs) obtained in these reactions, possessing bulged insertions of (R)-3-O-{4-[1-(pyren-1-yl)-1H-1,2,3-triazol-4-yl]benzyl}glycerol (7), formed parallel triplexes with thermal stabilities of 20.0, 34.0, and 40.0 degrees C at pH 7.2 in the cases of one, two, or three insertions of 7, respectively, separated by three nucleic bases. An oligonucleotide with four insertions of 7--each between three nucleic bases in the sequence--was unable to form complexes with complementary single- or double-stranded DNAs, as a result of self-aggregation of the pyrene moieties. This assumption was supported by the formation of a very strong excimer band at 460 nm in the fluorescence spectra. Molecular modeling of the parallel triplex with bulged insertion of the monomer 7 in the triplex-forming oligonucleotide (TFO) showed that only the pyrene moiety was stacking between the bases of the dsDNA, whereas 1,2,3-triazole did not participate in the triplex stabilization. Thermal denaturation studies of the duplexes and triplexes, as well as the fluorescence properties of TINA-triazole 7, are discussed and compared with previous studies on TINA.  相似文献   

11.
Elke Mayer-Enthart 《Tetrahedron》2007,63(17):3434-3439
DNA duplexes were functionalized covalently by clusters of five adjacent chromophores consisting of 5-(pyren-1-yl)-2′-deoxyuridine (Py-U) and 5-(10-methyl-phenothiazin-3-yl)-2′-deoxyuridine (Pz-U). The chromophores form a regular helical π-array along the major groove of duplex DNA when the 5-fold chromophore-modified oligonucleotides are hybridized with an unmodified counter strand. As a result, these chromophores interact significantly and their fluorescence and absorption properties can be modulated by the sequence within the π-array. The 5-fold Py-U stack shows a strongly enhanced emission. The presence of intervening Pz-U groups quenches the fluorescence of the Py-U chromophores. Such modulation of the optical properties within a chromophore stack is potentially useful for optical nanodevices and as nucleic acid sensors for molecular diagnostics. The duplex architecture of DNA is suitable to provide the supramolecular structural scaffold for a directed arrangement of chromophores.  相似文献   

12.
In recent years, fluorescently labeled oligonucleotides have become a widely used tool in diagnostics, DNA sequencing, and nanotechnology. The recently developed (phenylethynyl)pyrenes are attractive dyes for nucleic acid labeling, with the advantages of long-wave emission relative to the parent pyrene, high fluorescence quantum yields, and the ability to form excimers. Herein, the synthesis of six (phenylethynyl)pyrene-functionalized locked nucleic acid (LNA) monomers M(1)-M(6) and their incorporation into DNA oligomers is described. Multilabeled duplexes display higher thermal stabilities than singly modified analogues. An increase in the number of phenylethynyl substituents attached to the pyrene results in decreased binding affinity towards complementary DNA and RNA and remarkable bathochromic shifts of absorption/emission maxima relative to the parent pyrene fluorochrome. This bathochromic shift leads to the bright fluorescence colors of the probes, which differ drastically from the blue emission of unsubstituted pyrene. The formation of intra- and interstrand excimers was observed for duplexes that have monomers M(1)-M(6) in both complementary strands and in numerous single-stranded probes. If more phenylethynyl groups are inserted, the detected excimer signals become more intense. In addition, (phenylethynyl)pyrenecarbonyl-LNA monomers M(4), M(5), and M(6) proved highly useful for the detection of single mismatches in DNA/RNA targets.  相似文献   

13.
Single nucleotide polymorphisms (SNPs) are important markers in disease genetics and pharmacogenomic studies. Oligodeoxyribonucleotides (ONs) modified with 5-[3-(1-pyrenecarboxamido)propynyl]-2'-deoxyuridine monomer X enable detection of SNPs at non-stringent conditions due to differential fluorescence emission of matched versus mismatched nucleic acid duplexes. Herein, the thermal denaturation and optical spectroscopic characteristics of monomer X are compared to the corresponding locked nucleic acid (LNA) and α-L-LNA monomers Y and Z. ONs modified with monomers Y or Z result in a) larger increases in fluorescence intensity upon hybridization to complementary DNA, b) formation of more brightly fluorescent duplexes due to markedly larger fluorescence emission quantum yields (Φ(F)=0.44-0.80) and pyrene extinction coefficients, and c) improved optical discrimination of SNPs in DNA targets. Optical spectroscopy studies suggest that the nucleobase moieties of monomers X-Z adopt anti and syn conformations upon hybridization with matched and mismatched targets, respectively. The polarity-sensitive 1-pyrenecarboxamido fluorophore is, thereby, either positioned in the polar major groove or in the hydrophobic duplex core close to quenching nucleobases. Calculations suggest that the bicyclic skeletons of LNA and α-L-LNA monomers Y and Z influence the glycosidic torsional angle profile leading to altered positional control and photophysical properties of the C5-fluorophore.  相似文献   

14.
Sensitive, safe and easy-to-use probes for the detection of nucleic acids are urgently called for. To this end we are in the process of developing a fluorescence-based technique to work in homogeneous assay media. We have examined pyrene and fluorescein as fluorescent labels for natural DNA probes. A fraction of the cytosine residues of a single-stranded cDNA was randomly labelled with either pyrene or fluorescein using the bisulfite-catalyzed diamine reaction. Both fluorophores showed fluorescence quenching when the labelled probe was hybridized with its complementary strand and we describe the changes in steady-state fluorescence intensity that occurred upon hybridization. Our results demonstrate that pyrene quenching is more efficient than fluorescein quenching and thus pyrene-labelled probes are more sensitive for detecting and quantifying DNA from natural sources.  相似文献   

15.
When fluorescently tagged oligonucleotides are located near metal surfaces, their emission intensity is impacted by both electromagnetic effects (i.e., quenching and/or enhancement of emission) and the structure of the nucleic acids (e.g., random coil, hairpin, or duplex). We present experiments exploring the effect of label position and secondary structure in oligonucleotide probes as a function of hybridization buffer, which impacts the percentage of double-stranded probes on the surface after exposure to complementary DNA. Nanowires containing identifiable patterns of Au and Ag segments were used as the metal substrates in this work, which enabled us to directly compare different dye positions in a single multiplexed experiment and differences in emission for probes attached to the two metals. The observed metal-dye separation dependence for unstructured surface-bound oligonucleotides is highly sensitive to hybridization efficiency, due to substantial changes in DNA extension from the surface upon hybridization. In contrast, fluorophore labeled oligonucleotides designed to form hairpin secondary structures analogous to solution-phase molecular beacon probes are relatively insensitive to hybridization efficiency, since the folded form is quenched and therefore does not appreciably impact the observed distance-dependence of the response. Differences in fluorescence patterning on Au and Ag were noted as a function of not only chromophore identity but also metal-dye separation. For example, emission intensity for TAMRA-labeled oligonucleotides changed from brighter on Ag for 24-base probes to brighter on Au for 48-base probes. We also observed fluorescence enhancement at the ends of nanowires and at surface defects where heightened electromagnetic fields affect the fluorescence.  相似文献   

16.
Abstract— We developed a novel nucleic acid hybridization method based on excimer formation. We used two different 16-mer oligonucleotide probes that had a combined continuous-sequence run that was complementary to a target 32-mer. Prior to hybridization, the adjacent terminal ends (i.e. the 3'-terminal of one probe and the 5'-terminal of the other probe) were each labeled with one pyrene residue. When these probes simultaneously hybridized to the target, a 495 nm broad fluorescence band was produced. The intensity of this band increased as the intensity of the pyrene monomer bands decreased, indicating that the 495 nm band was attributed to the pyrene excimer. The excimer fluorescence, easily differentiated from the monomer bands for emission wavelength, opens up a new way to perform homogeneous hybridization assays and in vivo imaging of nucleic acids.  相似文献   

17.
The fluorescence spectroscopy of 7-azaindole (7aIn) incorporated in DNA oligonucleotides is investigated. Incorporation of 7aIn into DNA oligonucleotides is accomplished through standard solid-phase phosphoramidite chemistry. Fluorescence emission of the 7aIn chromophore shifts slightly to the red (from 386 nm to 388 nm) upon glycosylation at the N-1 position, but its relative fluorescence quantum yield increases 23 times, from 0.023 to 0.53. Upon incorporation into DNA, the fluorescence emission of 7aIn is greatly quenched with fluorescence quantum yields of 0.020 and 0.016 in single and double strand DNA, respectively. The fluorescence emission for 7aIn in DNA oligonucleotides shifts to the blue with an emission maximum at 379 nm. Both the strong fluorescence quenching and the blue shift of the emission spectrum signify that 7aIn is stacked with neighboring DNA bases in both single and double strand DNA. As the duplex DNA melts due to temperature increase, the fluorescence of the 7aIn chromophore increases, indicating the transition from the less fluorescent duplex DNA to the more fluorescent single strand DNA. Since this fluorescent 7aIn is a structural analog of purine, its fluorescence property may be utilized as a probe for studying nucleic acid structure and dynamics.  相似文献   

18.
The four stereoisomers of the double-headed acyclic nucleoside 1,4-bis(thymine-1-yl)butane-2,3-diol were incorporated in the central position of four 13-mer oligonucleotides. The phosphoramidite building blocks were synthesized in four or six steps from either D- or L-2,3-O-isopropylidenethreitol. Two epimeric and fully deprotected double-headed nucleosides were analyzed by X-ray crystallography. The incorporation into oligonucleotides was hampered by steric hindrance and formation of a cyclic phosphate. The use of pyridinium chloride as the activator and a kinetic analysis based on 31P NMR of the coupling and detritylation processes led to improved yields of the oligonucleotides. In comparison with the (S)-GNA monomer, one of the four stereoisomers was found to show a similar destabilization of a DNA duplex, indicating that the additional base can be introduced without a thermal penalty. Another stereoisomer was found to induce a thermal stabilization of a DNA:RNA three-way junction. Thus, the stereochemistry of this acyclic double-headed nucleoside motif is important, indicating potential for the design of artificial nucleic acid secondary structures.  相似文献   

19.
It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays.  相似文献   

20.
Pyrene-functionalized oligonucleotides (PFOs) are increasingly explored as tools in fundamental research, diagnostics and nanotechnology. Their popularity is linked to the ability of pyrenes to function as polarity-sensitive and quenchable fluorophores, excimer-generating units, aromatic stacking moieties and nucleic acid duplex intercalators. These characteristics have enabled development of PFOs for detection of complementary DNA/RNA targets, discrimination of single nucleotide polymorphisms (SNPs), and generation of π-arrays on nucleic acid scaffolds. This critical review will highlight the physical properties and applications of PFOs that are likely to provide high degree of positional control of the chromophore in nucleic acid complexes. Particular emphasis will be placed on pyrene-functionalized Locked Nucleic Acids (LNAs) since these materials display interesting properties such as fluorescence quantum yields approaching unity and recognition of mixed-sequence double stranded DNA (144 references).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号