首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have constructed a new electrochemical biosensor by immobilization of hemoglobin (Hb) and ZnWO4 nanorods in a thin film of chitosan (CTS) on the surface of carbon ionic liquid electrode. UV–vis and FT-IR spectra reveal that Hb remains in its native conformation in the film. The modified electrode was characterized by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. A pair of well-defined redox peaks appears which indicates direct electron transfer from the electrode. The presence of CTS also warrants biocompatibility. The electron transfer coefficient and the apparent heterogeneous electron transfer rate constant were calculated to be 0.35 and 0.757 s?1, respectively. The modified electrode displays good electrocatalytic activity for the reduction of trichloroacetic acid with the detection limit of 0.613 mmol L?1 (3σ). The results extend the protein electrochemistry based on the use of ZnWO4 nanorods.
Figure
A ZnWO4 nanorods and hemoglobin nanocomposite material modified carbon ionic liquid electrode was used as the platform for the construction of an electrochemical hemoglobin biosensor.  相似文献   

2.
A biocomposite film for sensing hydrogen peroxide (HP) is described that is based on nanospheres made from hemoglobin (Hb), graphene, and zinc oxide. The composition, morphology and size of the film were studied by transmission electron microscopy. UV-vis spectroscopy revealed that the Hb entrapped in the graphene and ZnO nanosphere retains its native structure. A pair of stable and well-defined quasi-reversible redox peaks of Hb was obtained, with a formal potential of ?30 mV at pH 6.5. Hb exhibits excellent long-term bioelectrocatalytic activity towards HP. The apparent heterogeneous electron transfer rate constant is 1.0 s?1, indicating that the presence of graphene in the composite film facilitates the electron transfer between matrix and the electroactive center of Hb. The sensor responds linearly to HP in the range from 1.8 μM to 2.3 mM, with a detection limit of 0.6 μM (at S/N?=?3). The apparent Michaelis-Menten constant is 1.46 mM. The biosensor displays high sensitivity, good reproducibility, and long-term stability.
Figure
TEM images of graphene insert: graphene-ZnO nanosphere  相似文献   

3.
We report on the direct electrochemistry and electrocatalytic properties of myoglobin (Mb) immobilized on a carbon ionic liquid electrode covered with a matrix composed of an ionic liquid, gellan gum, and Pd nanoparticles. UV-vis and FT-IR spectroscopy confirm that Mb retains its native structure in the composite film on the electrode. Scanning electron microscopy reveals that the nanoparticles are deposited on the surface of the Pd electrode. Cyclic voltametry gives a pair of well-defined and quasireversible redox peaks with a formal potential (E 0′) of ?332 mV and a peak-to-peak separation of 64 mV at near-neutral pH value. The modified electrode shows good electrocatalytic activity towards the reduction of hydrogen peroxide, with a linear range between 5.0 μM and 0.27 mM and a detection limit of 1.7 μM (S/N = 3). The apparent Michaelis-Menten constant is 88 μM.
Figure
A pair of well-defined redox peaks appeared on the cyclic voltammogram of Mb-GG-EMIMBF4/Pd/CILE (c) in pH 7.0 phosphate buffer saline at a scan rate of 500 mV·s?1  相似文献   

4.
Ferritin was immobilized on a glassy carbon electrode with electrodeposited cobalt oxide nanoparticles, and its direct electron transfer behavior was studied. It exhibits a pair of redox peaks due to direct electron transfer between ferritin and the nanoparticles. Electrochemical parameters including the formal potential (E0??), the charge transfer coefficient (??), and the apparent heterogeneous electron transfer rate constant (ks) were determined. The sensor displays excellent biocatalytic activity in terms of reduction of hydrogen peroxide, and this was applied to electrochemical sensing of hydrogen peroxide.
Figure
In this work, cobalt oxide nanoparticles were electrodeposited on the surface of an electrode for immobilization of ferritin molecules to prepare hydrogen peroxide biosensor. The immobilized protein molecules still preserve their biological activities and have great capability in catalyzing the reduction of hydrogen peroxide.  相似文献   

5.
We report on a novel electrochemical biosensor that was fabricated by immobilizing hemoglobin (Hb) onto the surface of a gold electrode modified with a chitosan@Fe3O4 nano-composite. The Fe3O4 nanoparticles were prepared by co-precipitation and have an average size of 25 nm. They were dispersed in chitosan solution to obtain the chitosan@Fe3O4 nano-composite particles with an average diameter of 35 nm as verified by transmission electron microscopy. X-ray diffraction patterns and Fourier transform IR spectroscopy confirmed that the crystallite structure of the Fe3O4 particles in the nano-composite has remained unchanged. At pH 7.0, Hb gives a pair of redox peaks with a potential of about ?0.21 V and ?0.36 V. The Hb on the film maintained its biological activity and displays good electrocatalytic reduction activity towards hydrogen peroxide. The linear range for the determination of H2O2 is from 2.3 μM to 9.6 mM, with a detection limit at 1.1 μM concentration (at S/N?=?3). The apparent Michaelis-Menten constant is 3.7 mM and indicates the high affinity of Hb for H2O2. This biosensor also exhibits good reproducibility and long-term stability. Thus, it is expected to possess potential applications in the development of the third-generation electrochemical biosensors.
Figure
The chitosan@Fe3O4 nano-composite particles was prepaired and characterized. It was immobilized onto the surface of a gold electrode to form hemoglobin modified biosensor. This biosensor displays good electrocatalytic reduction activity towards hydrogen peroxide. It also exhibits good reproducibility and long-term stability. It is expected to detect BOD and COD in water.  相似文献   

6.
A biosensor for hydrogen peroxide (HP) was developed by immobilizing hemoglobin on a glassy carbon electrode modified with activated carbon nanoparticles/Nafion. The characteristics of the sensor were studied by UV?Cvis spectroscopy and electrochemical methods. The immobilized Hb retained its native secondary structure, undergoes direct electron transfer (with a heterogeneous rate constant of 3.37?±?0.5?s?1), and displays excellent bioelectrocatalytic activity to the reduction of HP. Under the optimal conditions, its amperometric response varies linearly with the concentration of HP in the range from 0.9???M to 17???M. The detection limit is 0.4???M (at S/N?=?3). Due to the commercial availability and low cost of activated carbon nanoparticles, it can be considered as a useful supporting material for construction of other third-generation biosensors.
Figure
A biosensor for hydrogen peroxide (HP) was developed by immobilizing hemoglobin on a glassy carbon electrode modified with activated carbon nanoparticles/Nafion. It can be considered as a useful supporting material for construction of other third-generation biosensors.  相似文献   

7.
We have prepared porous and network-like nanofilms of gold by galvanic replacement of a layer of copper particles acting as a template. The films were first characterized by scanning electron microscopy and X-ray diffraction, and then modified with cysteamine so to enable the covalent immobilization of the enzyme microperoxidase-11. The immobilized enzyme undergoes direct electron transfer to the underlying electrodes, and the electrode displays high electrocatalytic activity towards the reduction of oxygen and hydrogen peroxide, respectively, owing to the largely enhanced electroactive surface of the porous gold film. The detection limit of H2O2 is 0.4 μM (3 S/N).
Figure
In this work, porous network-like Au films were prepared by galvanic replacement using Cu film as a sacrificial template. The cysteamine modified Au film was used to immobilize microperoxidase-11, which showed good stability and excellent electrochemical performance towards the reduction of O2 and H2O2, respectively  相似文献   

8.
A new electrochemical biosensor was constructed by immobilization of hemoglobin (Hb) on a DNA modified carbon ionic liquid electrode (CILE), which was prepared by using 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) as the modifier. UV‐vis absorption spectroscopic result indicated that Hb remained its native conformation in the composite film. The fabricated Nafion/Hb/DNA/CILE was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A pair of well‐defined redox peaks was obtained on the modified electrode, indicated that the Nafion and DNA composite film provided an excellent biocompatible microenvironment for keeping the native structure of Hb and promoting the direct electron transfer rate of Hb with the basal electrode. The electrochemical parameters of Hb in the composite film were further calculated with the results of the charge transfer coefficient (α) and the apparent heterogeneous electron transfer rate constant (ks) as 0.41 and 0.31 s?1. The proposed electrochemical biosensor showed good electrocatalytic response to the reduction of trichloroacetic acid (TCA), H2O2, NO and the apparent Michaelis–Menten constant (KMapp) for the electrocatalytic reaction was calculated, respectively.  相似文献   

9.
An amperometric biosensor for hydrogen peroxide (H2O2) has been constructed by immobilizing cytochrome c on an indium/tin oxide (ITO) electrode modified with a macroporous material. Cyclic voltammetry showed that the direct and quasi-reversible electron transfer of cytochrome c proceeds without the need for an electron mediator. A surface-controlled electron transfer process can be observed with an apparent heterogeneous electron-transfer rate constant (ks) of 29.2?s?1. The biosensor displays excellent electrocatalytic responses to the reduction of H2O2 to give amperometric responses that increase steadily with the concentration of H2O2 in the range from 5???M to 2?mM. The detection limit is 0.61???M at pH?7.4. The apparent Michaelis-Menten constant (Km) of the biosensor is 1.06?mM. This investigation not only provided a method for the direct electron transfer of cytochrome c on macroporous materials, but also established a feasible approach for durable and reliable detection of H2O2.
Figure
Biosensor for hydrogen peroxide was developed by immobilizing cytochrome c in the macroporous ordered silica foam (MOSF) through the electrostatic interaction. The achievement of the direct electron transfer between cytochrome c and electrode surface indicated that the MOSF modified electrode displayed good affinity and biocompatibility for cytochrome c.  相似文献   

10.
We report on an amperometric biosensor for hydrogen peroxide. It is obtained via layer-by-layer assembly of ordered mesoporous carbon nanospheres and poly(diallyldimethylammonium) on the surface of an indium tin oxide (ITO) glass electrode and subsequent adsorption of cytochrome c. UV–vis absorption spectroscopy was applied to characterize the process of forming the assembled layers. Cyclic voltammetry revealed a direct and quasi-reversible electron transfer between cytochrome c and the surface of the modified ITO electrode. The surface-controlled electron transfer has an apparent heterogeneous electron-transfer rate constant (k s ) of 5.9?±?0.2?s?1 in case of the 5-layer electrode. The biosensor displays good electrocatalytic response to the reduction of H2O2, and the amperometric signal increase steadily with the concentration of H2O2 in the range from 5?μM to 1.5?mM. The detection limit is 1?μM at pH 7.4. The apparent Michaelis-Menten constant (K m ) of the sensor is 0.53?mM. We assume that the observation of a direct electron transfer of cytochrome c on mesoporous carbon nanospheres may form the basis for a feasible approach for durable and reliable detection of H2O2.
Figure
An amperometric biosensor for hydrogen peroxide has been fabricated via layer-by-layer assembly of mesoporous carbon nanospheres and polyelectrolyte on ITO electrode surface for the adsorption of cytochrome c. The direct electrochemistry and electrocatalytic activity of cytochrome c was achieved on the multilayer-assembled electrode, indicating a good affinity and biocompatibility of mesoporous carbon nanospheres for cytochrome c.  相似文献   

11.
We report on a novel non-enzymatic sensor for hydrogen peroxide (HP) that is based on a biocomposite made up from chitosan (CS), hemoglobin (Hb), and silver nanoparticles (AgNPs). The AgNPs were prepared in the presence of CS and glucose in an ultrasonic bath, and CS is found to act as a stabilizing agent. They were then combined with Hb and CS to construct a carbon paste biosensor. The resulting electrode gave a well-defined redox couple for Hb, with a formal potential of about ?0.17?V (vs. SCE) at pH?6.86 and exhibited a remarkable electrocatalytic activity for the reduction of HP. The sensor was used to detect HP by flow injection analysis, and a linear response is obtained in the 0.08 to 250?μM concentration range. The detection limit is 0.05?μM (at S/N?=?3). These characteristics, along with its long-term stability make the sensor highly promising for the amperometric determination of HP.
Figure
(A) FIA it graphs of the different concentrations of H2O2 at CS/Hb/AgNP/CPE in the PBS (pH?6.86). Applied potential: ?0.4?V. (1) 0.8?×?10?6?mol?L?1, (2) 2.4?×?10?6?mol?L?1, (3) 4?×?10?6?mol?L?1 (B) Plot of catalytic peak currents vs. the concentration of H2O2.  相似文献   

12.
A hemoglobin (Hb)-modified electrode based on chitosan/Fe3O4 nanocomposite coated glassy carbon has been constructed for trichloroacetic acid (TCA) detection. The structure of chitosan/Fe3O4 nanocomposite was investigated using energy-dispersive X-ray analysis (EDS) and X-ray diffraction (XRD) patterns. The electron transfer rate constant (k s) of Hb was estimated for as high as 3.12 s?1. The immobilized Hb exhibited excellent electro-catalytic activity toward the reduction of TCA. The response current regressed to the concentration of TCA within the range of 5.70 μM to 205 μM with a detection limit of 1.9 μM (S/N = 3).  相似文献   

13.
A nanohybrid biomaterial was fabricated by mixing Co3O4 nanorods, gold nanoparticles (Au-NPs) and myoglobin (Mb), and depositing it on the surface of a carbon paste electrode containing the ionic liquid N-hexylpyridinium hexafluorophosphate as the binder. UV–vis and FT-IR revealed the Mb in the composite film to have remained in its native structure. A pair of well-defined redox peaks appears in cyclic voltammograms and indicates direct electron transfer from the Mb to the underlying electrode. The results are attributed to the favorable orientation of Mb in the composite film, to the synergistic effects of Co3O4 nanorods and Au-NPs. The modified electrode shows excellent electrocatalytic ability towards the reduction of substrates such as trichloroacetic acid and nitrite, and displays good stability and reproducibility.
Figure
A nanohybrid biomaterial composed of Co3O4 nanorods, gold nanoparticles and myoglobin was deposited on the surface of an ionic liquid modified carbon paste electrode. Direct electron transfer of Mb was realized and the electrocatalysis of the modified electrode was investigated.  相似文献   

14.
We have modified a glassy carbon electrode (GCE) with a film of poly(3-thiophene boronic acid), gold nanoparticles and graphene, and an antibody (Ab) was immobilized on its surface through the covalent bond formed between the boronic acid group and the glycosyl groups of the Ab. Subgroup J of avian leukosis viruses (ALV-J) were electrochemically determined with the help of this electrode. There is a linear relationship between the electron transfer resistance (R et) and the concentration of ALV-J in the range from 527 to 3,162 TCID50?mL?1 (where TCID50 is the 50?% tissue culture infective dose). The detection limit is 210 TCID50?mL?1 (at an S/N of 3), and the correlation coefficient (R) is 0.9964. The electrochemical immunoassay showed good selectivity, stability and reproducibility.
Figure
Schematic illustration of the stepwise immunosensor fabrication process  相似文献   

15.
Titanium dioxide (TiO2) nanowires were synthesized and used for the realization of direct electrochemistry of hemoglobin (Hb) with carbon ionic liquid electrode (CILE) as the substrate electrode. TiO2‐Hb composite was casted on the surface of CILE with a chitosan film and spectroscopic results confirmed that Hb retained its native structure in the composite. Direct electron transfer of Hb on the modified electrode was realized with a pair of quasi‐reversible redox waves appeared, indicating that the presence of TiO2 nanowires could accelerate the electron transfer rate between the electroactive center of Hb and the substrate electrode. Electrochemical behaviors of Hb on the modified electrode were carefully investigated with the values of the electron transfer coefficient (α), the electron transfer number and the heterogeneous electron transfer rate constant (ks) as 0.58, 0.98 and 1.62 s‐1. The Hb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid and NaNO2 with wider linear range and lower detection limit, indicating the successful fabrication of a new third‐generation biosensor.  相似文献   

16.
We report on a novel amperometric glassy carbon biosensing electrode for glucose. It is based on the immobilization of a highly sensitive glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The new technique for immobilization is exploiting the affinity of Co(II) ions to the histidine and cysteine moieties on the surface of GOx. The direct electrochemistry of immobilized GOx revealed that the functionalized CNTs greatly improve the direct electron transfer between GOx and the surface of the electrode to give a pair of well-defined and almost reversible redox peaks and undergoes fast heterogeneous electron transfer with a rate constant (k s) of 0.59?s?1. The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor is capable of detecting glucose at levels as low as 0.01?mM, and has excellent operational stability (with no decrease in the activity of enzyme over a 10?days period). The method of immobilizing GOx is easy and also provides a model technique for potential use with other redox enzymes and proteins.
Figure
This paper reports a novel amperometric biosensor for glucose based on the immobilization of the glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor exhibited high sensitivity, good stability and selectivity.  相似文献   

17.
We show that the addition of white dextrin during the electrochemical deposition of platinum nanostructures (nano-Pt) on a glassy carbon electrode (GCE) results in an electrochemically active surface that is much larger than that of platinum microparticles prepared by the same procedure but in the absence of dextrin. The nano-Pt deposits are characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy, and electrochemical methods. The SEM images reveal deposits composed of mainly nanoparticles and short nanorods. The GCE was applied as a novel and cost-effective catalyst for methanol oxidation. The use of nano-Pt improves the electrocatalytic activity and the stability of the electrodes.
Figure
(A) SEM image of the Pt nanostructures. (B) Electrochemical responses of the Pt nanostructures (solid line) and Pt microparticles (line) in 1.4 M CH3OH + 0.5 M H2SO4 solution at υ?=?50 mV s?1. Novel Pt nanostructures were electrodeposited at the surface of glassy carbon electrode in the presence of white dextrin as an additive, which exhibit high electrocatalytic activity towards methanol oxidation due to their highly electrochemically active surface area.  相似文献   

18.
Na Zheng  Zhuobin Yuan 《Talanta》2009,79(3):780-786
Magnetic nanoparticles (Fe3O4) were synthesized by a chemical coprecipitation method. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to confirm the crystallite structure and the particle's radius. The Fe3O4 nanoparticles and chitosan (CS) were mixed to form a matrix in which haemoglobin (Hb) can be immobilized for the fabrication of H2O2 biosensor. The Fe3O4-CS-Hb film exhibited a pair of well-defined and quasi-reversible cyclic voltammetric peaks due to the redox of Hb-heme Fe (III)/Fe (II) in a pH 7.0 phosphate buffer. The formal potential of Hb-heme Fe(III)/Fe(II) couple varied linearly with the increase of pH in the range of 4.0-10.0 with a slope of 46.5 mV pH−1, indicating that electron transfer was accompanied with single proton transportation in the electrochemical reaction. The surface coverage of Hb immobilized on Fe3O4-CS film glassy carbon electrode was about 1.13 × 10−10 mol cm−2. The heterogeneous electron transfer rate constant (ks) was 1.04 s−1, indicating great facilitation of the electron transfer between Hb and magnetic nanoparticles-chitosan modified electrode. The modified electrode showed excellent electrocatalytic activity toward oxygen and hydrogen peroxide reduction. The apparent Michaelis-Menten constant for H2O2 was estimated to be 38.1 μmol L−1.  相似文献   

19.
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10–1,300 μM concentration range (R 2 ?=?0.9987), the detection limit is very low (5.8 μM), response is rapid (< 2 s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good.
Figure
An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.  相似文献   

20.
We describe an ionic liquid modified electrode (CPE-IL) for sensing hydrogen peroxide (HP) that was modified by the layer-by-layer technique with myoglobin (Mb). In addition, the surface of the electrode was modified with CeO2 nanoparticles (nano-CeO2) and hyaluronic acid. UV-vis and FTIR spectroscopy confirmed that Mb retains its native structure in the composite film. Scanning electron microscopy showed that the nano-CeO2 closely interact with Mb to form an inhomogeneously distributed film. Cyclic voltammetry reveals a pair of quasi-reversible redox peaks of Mb, with the cathodic peak at ?0.357?V and the anodic peak at ?0.269?V. The peak separation (??E p) and the formal potential (E 0??) are 88?mV and ?0.313?V (vs. Ag/AgCl), respectively. The Mb immobilized in the modified electrode displays an excellent electrocatalytic activity towards HP in the 0.6 to 78.0???M concentration range. The limit of detection is 50?nM (S/N?=?3), and then the Michaelis-Menten constant is 71.8???M. We believe that such a composite film has potential to further investigate other redox proteins and in the fabrication of third-generation biosensors.
Figure
The HA/CeO2/Mb/CPE-IL displayed a pair of quasi-reversible redox peaks. The cathodic peak and the anodic peak of Mb were observed at ?0.357?V and ?0.269?V with the formal potential (E 0??) of ?0.313?V and the ??E p was decreased to 88?mV (curve f).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号