首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability and unfolding mechanism of the N‐terminal β‐hairpin of the [2Fe‐2S] ferredoxin I from the blue‐green alga Aphanothece sacrum in pure methanol, 40% (v/v) methanol‐water, and pure water systems were investigated by 10 ns molecular dynamics simulations under periodic boundary conditions. The β‐hairpin was mostly in its native‐like state in pure methanol, whereas it unfolds dramatically following the ‘zip‐up’ mechanism when it was placed in pure water. Both interstrand and inside‐turn hydrogen bonds account for the stability of the β‐hairpin in its native‐like conformation, whereas hydrophobic interactions among nonpolar side chains are responsible for maintaining its stable loop‐like intermediate structures in 40% (v/v) methanol‐water. Reducing solvent polarity seems to increase the stability of the β‐hairpin in its native‐like structure. Methanol is likely to mimic the partially hydrophobic environment around the N‐terminal β‐hairpin by the subsequent α‐helix.  相似文献   

2.
β‐barrel membrane proteins are key components of the outer membrane of bacteria, mitochondria and chloroplasts. Their three‐dimensional structure is defined by a network of backbone hydrogen bonds between adjacent β‐strands. Here, we employ hydrogen–deuterium (H/D) exchange in combination with NMR spectroscopy and mass spectrometry to monitor backbone hydrogen bond formation during folding of the outer membrane protein X (OmpX) from E. coli in detergent micelles. Residue‐specific kinetics of interstrand hydrogen‐bond formation were found to be uniform in the entire β‐barrel and synchronized to formation of the tertiary structure. OmpX folding thus propagates via a long‐lived conformational ensemble state in which all backbone amide protons exchange with the solvent and engage in hydrogen bonds only transiently. Stable formation of the entire OmpX hydrogen bond network occurs downhill of the rate‐limiting transition state and thus appears cooperative on the overall folding time scale.  相似文献   

3.
Conformational changes in proteins and peptides can be initiated by diverse processes. This raises the question how the variation of initiation mechanisms is connected to differences in folding or unfolding processes. In this work structural dynamics of a photoswitchable β‐hairpin model peptide were initiated by two different mechanisms: temperature jump (T‐jump) and isomerization of a backbone element. In both experiments the structural changes were followed by time‐resolved IR spectroscopy in the nanosecond to microsecond range. When the photoisomerization of the azobenzene backbone switch initiated the folding reaction, pronounced absorption changes related to folding into the hairpin structure were found with a time constant of about 16 μs. In the T‐jump experiment kinetics with the same time constant were observed. For both initiation processes the reaction dynamics revealed the same strong dependence of the reaction time on temperature. The highly similar transients in the microsecond range show that the peptide dynamics induced by T‐jump and isomerization are both determined by the same mechanism and exclude a downhill‐folding process. Furthermore, the combination of the two techniques allows a detailed model for folding and unfolding to be presented: The isomerization‐induced folding process ends in a transition‐state reaction scheme, in which a high energetic barrier of 48 kJ mol?1 separates unfolded and folded structures.  相似文献   

4.
Choline‐binding modules (CBMs) have a ββ‐solenoid structure composed of choline‐binding repeats (CBR), which consist of a β‐hairpin followed by a short linker. To find minimal peptides that are able to maintain the CBR native structure and to evaluate their remaining choline‐binding ability, we have analysed the third β‐hairpin of the CBM from the pneumococcal LytA autolysin. Circular dichroism and NMR data reveal that this peptide forms a highly stable native‐like β‐hairpin both in aqueous solution and in the presence of trifluoroethanol, but, strikingly, the peptide structure is a stable amphipathic α‐helix in both zwitterionic (dodecylphosphocholine) and anionic (sodium dodecylsulfate) detergent micelles, as well as in small unilamellar vesicles. This β‐hairpin to α‐helix conversion is reversible. Given that the β‐hairpin and α‐helix differ greatly in the distribution of hydrophobic and hydrophilic side chains, we propose that the amphipathicity is a requirement for a peptide structure to interact and to be stable in micelles or lipid vesicles. To our knowledge, this “chameleonic” behaviour is the only described case of a micelle‐induced structural transition between two ordered peptide structures.  相似文献   

5.
The incorporation of β‐amino acid residues into the antiparallel β‐strand segments of a multi‐stranded β‐sheet peptide is demonstrated for a 19‐residue peptide, Boc‐LVβFVDPGLβFVVLDPGLVLβFVV‐OMe (BBH19). Two centrally positioned DPro–Gly segments facilitate formation of a stable three‐stranded β‐sheet, in which β‐phenylalanine (βPhe) residues occur at facing positions 3, 8 and 17. Structure determination in methanol solution is accomplished by using NMR‐derived restraints obtained from NOEs, temperature dependence of amide NH chemical shifts, rates of H/D exchange of amide protons and vicinal coupling constants. The data are consistent with a conformationally well‐defined three‐stranded β‐sheet structure in solution. Cross‐strand interactions between βPhe3/βPhe17 and βPhe3/Val15 residues define orientations of these side‐chains. The observation of close contact distances between the side‐chains on the N‐ and C‐terminal strands of the three‐stranded β‐sheet provides strong support for the designed structure. Evidence is presented for multiple side‐chain conformations from an analysis of NOE data. An unusual observation of the disappearance of the Gly NH resonances upon prolonged storage in methanol is rationalised on the basis of a slow aggregation step, resulting in stacking of three‐stranded β‐sheet structures, which in turn influences the conformational interconversion between type I′ and type II′ β‐turns at the two DPro–Gly segments. Experimental evidence for these processes is presented. The decapeptide fragment Boc‐LVβFVDPGLβFVV‐OMe (BBH10), which has been previously characterized as a type I′ β‐turn nucleated hairpin, is shown to favour a type II′ β‐turn conformation in solution, supporting the occurrence of conformational interconversion at the turn segments in these hairpin and sheet structures.  相似文献   

6.
The role of the small exterior hydrophobic cluster (SEHC) in the strand region of the N‐terminal β‐hairpin of ubiquitin on the structural stability and the folding/unfolding kinetics of the protein have been examined. We introduce a Phe→Ala substitution at residue 4 in the strand region of the N‐terminal β‐hairpin of the ubiquitin. A peptide with the same amino acid sequence as the first 21 residues of the mutated ubiquitin has also been synthesized. The F4A mutation unfolds the hairpin structure of the peptide segment without disruption of the turn. The same mutation does not seem to affect the overall structure, but the stability of the mutated full‐length protein decreases by approx. 2 kcal/mol. Kinetically, the entire hairpin structure is implicated in the transition state during folding of the wild type protein. The rate of refolding is retarded by the F4A mutation in ~80% of the protein molecules. The F4A substitution also increases the unfolding rate of the protein by 10 fold. Thus the hydrophobic side‐chain of Phe‐4 not only contributes to the stability of the hairpin, but also to the stability of the entire protein by forming a cluster together with the hydrophobic residues on the C‐terminal strand.  相似文献   

7.
The mimicry of protein‐sized β‐sheet structures with unnatural peptidic sequences (foldamers) is a considerable challenge. In this work, the de novo designed betabellin‐14 β‐sheet has been used as a template, and α→β residue mutations were carried out in the hydrophobic core (positions 12 and 19). β‐Residues with diverse structural properties were utilized: Homologous β3‐amino acids, (1R,2S)‐2‐aminocyclopentanecarboxylic acid (ACPC), (1R,2S)‐2‐aminocyclohexanecarboxylic acid (ACHC), (1R,2S)‐2‐aminocyclohex‐3‐enecarboxylic acid (ACEC), and (1S,2S,3R,5S)‐2‐amino‐6,6‐dimethylbicyclo[3.1.1]heptane‐3‐carboxylic acid (ABHC). Six α/β‐peptidic chains were constructed in both monomeric and disulfide‐linked dimeric forms. Structural studies based on circular dichroism spectroscopy, the analysis of NMR chemical shifts, and molecular dynamics simulations revealed that dimerization induced β‐sheet formation in the 64‐residue foldameric systems. Core replacement with (1R,2S)‐ACHC was found to be unique among the β‐amino acid building blocks studied because it was simultaneously able to maintain the interstrand hydrogen‐bonding network and to fit sterically into the hydrophobic interior of the β‐sandwich. The novel β‐sandwich model containing 25 % unnatural building blocks afforded protein‐like thermal denaturation behavior.  相似文献   

8.
β Helices—helices formed by alternating d,l ‐peptides and stabilized by β‐sheet hydrogen bonding—are found naturally in only a handful of highly hydrophobic peptides. This paper explores the scope of β‐helical structure by presenting the first design and biophysical characterization of a hydrophilic d,l ‐peptide, 1 , that forms a β helix in methanol. The design of 1 is based on the β‐hairpin/β helix—a new supersecondary that had been characterized previously only for hydrophobic peptides in nonpolar solvents. Incorporating polar residues in 1 provided solubility in methanol, in which the peptide adopts the expected β‐hairpin/β‐helical structure, as evidenced by CD, analytical ultracentrifugation (AUC), NMR spectroscopy, and NMR‐based structure calculations. Upon titration with water (at constant peptide concentration), the structure in methanol ( 1 m ) transitions cooperatively to an extended conformation ( 1 w ) resembling a cyclic β‐hairpin; observation of an isodichroic point in the solvent‐dependent CD spectra indicates that this transition is a two‐state process. In contrast, neither 1 m nor 1 w show cooperative thermal melting; instead, their structures appear intact at temperatures as high as 65 °C; this observation suggests that steric constraint is dominant in stabilizing these structures. Finally, the 1H NMR CαH spectroscopic resonances of 1 m are downfield‐shifted with respect to random‐coil values, a hitherto unreported property for β helices that appears to be a general feature of these structures. These results show for the first time that an appropriately designed β‐helical peptide can fold stably in a polar solvent; furthermore, the structural and spectroscopic data reported should prove useful in the future design and characterization of water‐soluble β helices.  相似文献   

9.
There are some controversial opinions about the origin of folding β‐hairpin stability in aqueous solution. In this study, the structural and dynamic behavior of a 16‐residue β‐hairpin from B1 domain of protein G has been investigated at 280, 300, 350 and 450 K using molecular dynamics (MD) simulations by means of Atom‐Bond Electronegativity Equalization Method Fused into Molecular Mechanics i.e., ABEEMδπ/MM and the explicit ABEEM‐7P water solvent model. In addition, a 300 K simulation of one mutant having the aromatic residues substituted with alanines has been performed. The hydrophobic surface area, hydrophilic surface area and some structural properties have been used to measure the role of the hydrophobic interactions. It is found that the aromatic residues substituted with alanines have shown an evident destabilization of the structure and unfolding started after 1.5 ns. It is also found that the number of the main chain hydrogen bonds have different distributions through three different simulations. All above demonstrate that the hydrophobic interactions and the main chain hydrogen bonds play an important role in the stability of the folding structure of β‐hairpin in solution. Furthermore, through the structural analyses of the β‐hairpin structures from four temperature simulations and the comparison with other MD simulations of β‐hairpin peptides, the new ABEEMδπ force field can reproduce the structural data in good agreement with the experimental data.  相似文献   

10.
This work describes the use of conformer‐selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four‐membered ring cyclic β‐amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans‐substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen‐atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen‐bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis‐substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block.  相似文献   

11.
Covalent side‐chain cross‐links are a versatile method to control peptide folding, particularly when α‐helical secondary structure is the target. Here, we examine the application of oxime bridges, formed by the chemoselective reaction between aminooxy and aldehyde side chains, for the stabilization of a helical peptide involved in a protein–protein complex. A series of sequence variants of the dimeric coiled coil GCN4‐p1 bearing oxime bridges at solvent‐exposed positions were prepared and biophysically characterized. Triggered unmasking of a side‐chain aldehyde in situ and subsequent cyclization proceed rapidly and cleanly at pH 7 in the folded protein complex. Comparison of folding thermodynamics among a series of different oxime bridges show that the cross links are consistently stabilizing to the coiled coil, with the extent of stabilization sensitive to the exact size and structure of the macrocycle. X‐ray crystallographic analysis of a coiled coil with the best cross link in place and a second structure of its linear precursor show how the bridge is accommodated into an α‐helix. Preparation of a bicyclic oligomer by simultaneous formation of two linkages in situ demonstrates the potential use of triggered oxime formation to both trap and stabilize a particular peptide folded conformation in the bound state.  相似文献   

12.
A novel metal‐induced template for the self‐assembly of two independent phosphane ligands by means of unprecedented multiple noncovalent interactions (classical hydrogen bond, weak hydrogen bond, metal coordination, π‐stacking interaction) was developed and investigated. Our results address the importance and capability of weak hydrogen bonds (WHBs) as important attractive interactions in self‐assembling processes based on molecular recognition. Together with a classical hydrogen bond, WHBs may serve as promoters for the specific self‐assembly of complementary monomeric phosphane ligands into supramolecular hybrid structures. The formation of an intermolecular C? H???N hydrogen bond and its persistence in the solid state and in solution was studied by X‐ray crystal analysis, mass spectrometry and NMR spectroscopy analysis. Further evidence was demonstrated by DFT calculations, which gave specific geometric parameters for the proposed conformations and allowed us to estimate the energy involved in the hydrogen bonds that are responsible for the molecular recognition process. The presented template can be regarded as a new type of self‐assembled β‐turn mimic or supramolecular pseudo amino acid for the nucleation of β‐sheet structures when attached to oligopeptides.  相似文献   

13.
Gas‐phase single‐conformation spectroscopy is used to study Ac‐Gln‐Gln‐NHBn in order to probe the interplay between sidechain hydrogen bonding and backbone conformational preferences. This small, amide‐rich peptide offers many possibilities for backbone–backbone, sidechain–backbone, and sidechain–sidechain interactions. The major conformer observed experimentally features a type‐I β‐turn with a canonical 10‐membered ring C=O—H?N hydrogen bond between backbone amide groups. In addition, the C=O group of each Gln sidechain participates in a seven‐membered ring hydrogen bond with the backbone NH of the same residue. Thus, sidechain hydrogen‐bonding potential is satisfied in a manner that is consistent with and stabilizes the β‐turn secondary structure. This turn‐forming propensity may be relevant to pathogenic amyloid formation by polyglutamine segments in human proteins.  相似文献   

14.
Hybrid peptidic oligomers comprising natural and unnatural amino acid residues that can exhibit biomolecular folding and hydrogen‐bonding mimicry have attracted considerable interest in recent years. While a variety of hybrid peptidic helices have been reported in the literature, other secondary structural patterns such as γ‐turns and ribbons have not been well explored so far. The present work reports the design of novel periodic γ‐turns in the oligomers of 1:1 natural‐α/unnatural trans‐β‐norborenene (TNAA) amino acid residues. Through DFT, NMR, and MD studies, it is convincingly shown that, in the mixed conformational pool, the heterogeneous backbone of the hybrid peptides preferentially adopt periodic 8‐membered (pseudo γ‐turn)/7‐membered (inverse γ‐turn) hydrogen bonds in both polar and non‐polar solvent media. It is observed that the stereochemistry and local conformational preference of the β‐amino acid building blocks have a profound influence on accessing the specific secondary fold. These findings may be of significant relevance for the development of molecular scaffolds that facilitate desired positioning of functional side‐chains.  相似文献   

15.
Post‐translational modification is a common mechanism to affect conformational change in proteins, which in turn, regulates function. Herein, this principle is expanded to instruct the formation of supramolecular assemblies by controlling the conformational bias of self‐assembling peptides. Biophysical and mechanical studies show that an engineered phosphorylation/dephosphorylation couple can affectively modulate the folding of amphiphilic peptides into a conformation necessary for the formation of well‐defined fibrillar networks. Negative design principles based on the incompatibility of hosting residue side‐chain point charge within hydrophobic environments proved key to inhibiting the peptide's ability to adopt its low energy fold in the assembled state. Dephosphorylation relieves this restriction, lowers the energy barrier between unfolded and folded peptide, and allows the formation of self‐assembled fibrils that contain the folded conformer, thus ultimately enabling the formation of a cytocompatible hydrogel material.  相似文献   

16.
Computer simulation using molecular dynamics is increasingly used to simulate the folding equilibria of peptides and small proteins. Yet, the quality of the obtained results depends largely on the quality of the force field used. This comprises the solute as well as the solvent model and their energetic and entropic compatibility. It is, however, computational very expensive to perform test simulations for each combination of force‐field parameters. Here, we use the one‐step perturbation technique to predict the change of the free enthalpy of folding of a β‐peptide in methanol solution due to changing a variety of force‐field parameters. The results show that changing the solute backbone partial charges affects the folding equilibrium, whereas this is relatively insensitive to changes in the force constants of the torsional energy terms of the force field. Extending the cut‐off distance for nonbonded interactions beyond 1.4 nm does not affect the folding equilibrium. The same result is found for a change of the reaction‐field permittivity for methanol from 17.7 to 30. The results are not sensitive to the criterion, e.g., atom‐positional RMSD or number of hydrogen bonds, that is used to distinguish folded and unfolded conformations. Control simulations with perturbed Hamiltonians followed by backward one‐step perturbation indicated that quite large perturbations still yield reliable results. Yet, perturbing all solvent molecules showed where the limitations of the one‐step perturbation technique are met. The evaluated methodology constitutes an efficient tool in force‐field development for molecular simulation by reducing the number of required separate simulations by orders of magnitude. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

17.
Conformational constrained β‐hairpin peptides are useful tool to modulate protein–protein interactions. A triazole bridge in hydrogen‐bonded positions between two antiparallel strands induces a conformational stabilization of the β‐hairpin peptide. The entity of the stability of the β‐hairpin peptide depends on the length of the bridge.  相似文献   

18.
The three‐dimensional structure of a protein is stabilized by a number of different atomic interactions. One of these is hydrogen bonding. Its influence on the spatial structure of the hen egg white lysozyme is investigated by replacing peptide bonds (except those of the two proline residues) by ester bonds. Molecular dynamics simulations of native and ester‐linked lysozyme are compared with the native crystal structure and with NOE distance bounds derived from solution NMR experiments. The ester‐linked protein shows a slight compaction while losing its native structure. However, it does not unfold completely. The structure remains compact due to its hydrophobic core and a changed network of hydrogen bonds involving side chains.  相似文献   

19.
β‐Lactamases threaten the clinical use of carbapenems, which are considered antibiotics of last resort. The classical mechanism of serine carbapenemase catalysis proceeds through hydrolysis of an acyl‐enzyme intermediate. We show that class D β‐lactamases also degrade clinically used 1β‐methyl‐substituted carbapenems through the unprecedented formation of a carbapenem‐derived β‐lactone. β‐Lactone formation results from nucleophilic attack of the carbapenem hydroxyethyl side chain on the ester carbonyl of the acyl‐enzyme intermediate. The carbapenem‐derived lactone products inhibit both serine β‐lactamases (particularly class D) and metallo‐β‐lactamases. These results define a new mechanism for the class D carbapenemases, in which a hydrolytic water molecule is not required.  相似文献   

20.
As part of our continuing study of the effects of the turn sequence on the conformational stability as well as the mechanism of folding of a beta-sheet structure, we have undertaken a parallel investigation of the solution structure, conformational stability, and kinetics of refolding of the beta-sheet VFIVDGOTYTEV(D)PGOKILQ. The latter peptide is an analogue of the original Gellman beta-sheet VFITS(D)PGKTYTEV(D)PGOKILQ, wherein the TS(D)PGK turn sequence in the first hairpin has been replaced by VDGO. Thermodynamics studies revealed comparable conformational stability of the two peptides. However, unlike the Gellman peptide, which showed extremely rapid refolding of the first hairpin, early kinetic events associated with the refolding of the corresponding hairpin in the VDGO mutant were found to be significantly slower. A detailed study of the conformation of the modified peptide suggested that hydrophobic interactions might be contributing to its stability. Accordingly, we surmise that the early kinetic events are sensitive to whether the formation of the hairpin is nucleated at the turn or by sequestering of the hydrophobic residues across the strand, before structural rearrangements to produce the nativelike topology. Nucleation of the hairpin at the turn is expected to be intrinsically rapid for a strong turn. However, if the process must involve collapse of hydrophobic side chains, the nucleation should be slower as solvent molecules must be displaced to sequester the hydrophobic residues. These findings reflect the contribution of different forces toward nucleation of hairpins in the mechanism of folding of beta-sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号