首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
楚宝临  郭宝元  王志华  林金明 《色谱》2007,25(5):657-663
围绕毛细管电泳(CE)技术近10年来在分离手性环境污染物方面的应用进行了介绍。对CE手性分离技术的特点做了简要概括,归纳了目前用于CE手性分离的手性选择剂。对CE技术在分离除草剂、杀虫剂、杀真菌剂以及多氯联苯(PCBs)等手性环境污染物方面的应用进行了综述,并对CE在手性环境污染物分离中的应用提出新的研究方向。  相似文献   

2.
许旭  陈钢  刘浩 《色谱》2020,38(10):1154-1169
药物分析是毛细管电泳(CE)的重要应用领域,所有CE分离模式与检测方法都在各种药物及其不同形式样品的分离分析中显示出特色和应用能力。该文从药品分析领域中的小分子药物(包括手性药物)及其有关物质、中药与天然产物、体内药物分析、生物制品药物分析等几个方面,综述了近几年CE在这些传统药物分析领域应用的研究进展。限于篇幅,未包括现代药物分析研究比较活跃的理化常数测定、亲和毛细管电泳与结合常数研究(药物与受体间的相互作用等)、临床生物标志物分析、代谢组学和微流控芯片CE分析等方面的内容。根据目前传统药物分析领域的发展,该文关注到近期CE在顺应药物分析的法规需求、电容耦合非接触电导检测(CE-C4 D)、改进检测灵敏度与精密度、CE-十二烷基硫酸钠(SDS)毛细管电泳、全柱成像毛细管等电聚焦(icIEF)、抗体分析等方面的新进展。该文结合文献,讨论了目前传统药物分析领域的需求,以及CE在其中的地位、挑战和机遇。对目前CE主要作为互补分析方法在化学药和中药分析中的应用研究提出了一些针对性的建议,期待CE在生物制品分析中的特色和能力得到进一步的发挥,同时提出CE-MS和对CE分析重复性改进等新进展可能对未来CE应用领域的大幅度扩展。该综述主要涉及近3年(2017年1月到2020年2月)及部分2016年的相关文献。  相似文献   

3.
张琪 《色谱》2020,38(9):1028-1037
在现代分离科学中,手性化合物的分离分析一直是研究的重点和难点。相比于高效液相色谱(HPLC)、气相色谱(GC)等传统色谱分析方法,毛细管电泳(CE)技术凭借其高效率、低消耗、分离模式多样化等诸多优势,已经发展成为手性分离研究领域最有应用前景的分析方法之一。近年来,研究人员在CE手性分析方法的构建过程中,基于毛细管电动色谱(EKC)、配体交换毛细管电泳(LECE)、毛细管电色谱(CEC)等各种基础电泳模式,不断地对传统手性分离体系进行优化和改造,构建出了许多高性能的新型手性CE分离体系。如利用各类功能化离子液体以"手性离子液体协同拆分""手性离子液体配体交换""离子液体手性选择剂"等模式设计出多种基于离子液体的CE手性分离体系;利用纳米材料独特的尺寸效应、多样性、可设计性等特点,直接或与传统手性选择剂有机结合构建CE手性分离体系。此外,金属有机骨架材料修饰、低共熔溶剂修饰、非连续分段式部分填充等各式新颖的CE手性分离体系也都被研究人员成功开发,并表现出较大的发展潜力。该综述将对近年来(尤其是2015~2019年)此类新型CE手性分离体系的发展状况进行梳理,并结合相应的手性识别机理研究和手性CE方法实际应用情况,对该领域存在的问题及发展前景进行分析和展望。  相似文献   

4.
The latest developments in chiral analysis of β‐blocker drugs by capillary electromigration techniques are reviewed in this article. Following the previous review by Aturki et al. [Electrophoresis 2011, 32, 2602–2628], this review includes the papers published during the period from January 2011 to December 2013. During this time, some novel chiral selectors were reported and applied to improve the enantioseparation of β‐blocker drugs and structurally related compounds. These chiral selectors include CDs and their derivatives, macrocyclic antibiotics, tartrate complexs, the monolithic molecularly imprinted polymer, and the polymeric surfactants. In addition, this article summarizes the methodological improvements for enhancing sensitivity in chiral analysis of β‐blockers and structurally related compounds by CE. The involved authors described the use of online sample preconcentration techniques to increase the detection sensitivity in the enantiomeric analysis of a broad range of samples.  相似文献   

5.
简单介绍了毛细管电泳在医药领域中的应用,包括药物分析、中药成分分析、手性对映体分离分析和临床化学、法医及单细胞分析等。药物分析中包括主药成分分析、相关杂质检测、药物计量离子配比测定和定量分析等。中药成分分析中包括各类药效成分、中药材中主要成分及中药复方制剂成分分析。手性对映体分离中包括机理研究、新型手性选择剂。临床化学中包括临床疾病诊断、临床蛋白分析、临床药物监测、药物代谢研究和分子生物学测定。法庭科学中包括毒物分析、枪击残余物分析、炸药分析、笔迹墨水分析。单细胞分析中包括神经细胞分析、红细胞分析和胚胎细胞分析。  相似文献   

6.
This review discusses selected aspects of selector-select and interactions in chiral capillary electrophoresis (CE). Studies performed using nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS) and X-ray crystallography for a better understanding of chiral recognition mechanisms in CE are summarized. The theoretical background of chiral CE in general, mathematical models, method development and optimization strategies, etc., are not covered. A general overview on the most recent developments in chiral CE is presented in this volume in the review paper by Bocek [1].  相似文献   

7.
Amini A 《Electrophoresis》2001,22(15):3107-3130
This paper provides an overview of the current status of chiral capillary electrophoresis (CE). The emphasis is placed on the application of CE in chiral separation of various racemic compounds. During the last two years about 280 papers, several review articles, and two entire issues, edited by S. Fanali (Electrophoresis 1999, 20, 2577-2798, and H. Nishi and S. Terabe (J. Chromatogr. A 2000, 879, 1-471.) have been devoted to chiral CE. Enantiomeric separations of various compounds, e.g., pharmaceuticals, drug candidates, drugs and related metabolites in biological fluids, amino acids, di- and tri peptides, pesticides and fungicides, have been performed using different chiral selectors. Native and derivatized cyclodextrins continue to be the most widely used chiral selectors. Other chiral selectors such as natural and synthetic chiral micelles, crown ethers, chiral ligands, proteins, oligo- and polysaccharides, and macrocyclic antibiotics have also been applied to chiral CE separations.  相似文献   

8.
In the field of metabolomics, CE‐MS is now recognized as a strong analytical technique for the analysis of (highly) polar and charged metabolites in a wide range of biological samples. Over the past few years, significant attention has been paid to the design and improvement of CE‐MS approaches for (large‐scale) metabolic profiling studies and for establishing protocols in order to further expand the role of CE‐MS in metabolomics. In this paper, which is a follow‐up of a previous review paper covering the years 2014–2016 (Electrophoresis 2017, 38, 190–202), main advances in CE‐MS approaches for metabolomics studies are outlined covering the literature from July 2016 to June 2018. Aspects like developments in interfacing designs and data analysis tools for improving the performance of CE‐MS for metabolomics are discussed. Representative examples highlight the utility of CE‐MS in the fields of biomedical, clinical, microbial, and plant metabolomics. A complete overview of recent CE‐MS‐based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings and MS detection mode. Finally, some general conclusions and perspectives are given.  相似文献   

9.
《Electrophoresis》2017,38(13-14):1661-1668
The methodological developments and applications of CE related to studying biotransformations of metal‐based nanoscale particles of impending medicinal use are overviewed. This is an update to a previous review article (Aleksenko, S. S., Shmykov, A. Y., Oszwałdowski, S., Timerbaev, A. R., Metallomics 2012, 4 , 1141–1148) and it covers the research papers published within the last five years. As was anticipated in that review, CE can now be seen as a customary technique in the analysis of biomolecular interactions that exert an impact on the mechanism of action of nanoparticles, comprising metabolism, delivery, cell processing, and targeting. Different ways by which the CE method is applied for such monitoring, including conjugation mode, sample preparation, separation, and detection, are critically assessed. Special emphasis is put on examinations using inductively coupled plasma MS detection recent advent of which to the area made CE a versatile speciation tool for biomedical studies of nanomaterials containing metals.  相似文献   

10.
This review covers recent advances of capillary electrophoresis (CE) in pharmaceutical analysis. The principle, instrumentation, and conventional modes of CE are briefly discussed. Advances in the different CE techniques (non-aqueous CE, microemulsion electrokinetic chromatography, capillary isotachophoresis, capillary electrochromatography, and immunoaffinity CE), detection techniques (mass spectrometry, light-emitting diode, fluorescence, chemiluminescence, and contactless conductivity), on-line sample pretreatment (flow injection) and chiral separation are described. Applications of CE to assay of active pharmaceutical ingredients (APIs), drug impurity testing, chiral drug separation, and determination of APIs in biological fluids published from 2008 to 2009 are tabulated.  相似文献   

11.
This review presents different solvents and electrolytes commonly used as BGEs in NACE for the analysis of pharmaceutical compounds. Most NACE applications carried out since 1998 for the analysis of compounds of pharmaceutical interest are presented in four tables: (i) analysis of drugs and related substances, (ii) analysis of chiral substances, (iii) analysis of phytochemical extracts and (iv) analysis of drugs in biological fluids. These selected examples are used to illustrate the interest in NACE versus conventional aqueous CE.  相似文献   

12.
In this work, investigation of the comparative influence of diverse ionic liquids (ILs) as electrolyte additives on the chiral separation of dansylated amino acids by using Zn(II)‐L‐arginine complex mediated chiral ligand exchange CE (CLE‐CE) was conducted. It has been found that not only the varied substituted group number, but also the alkyl chain length of the substituted group on imidazole ring in the structure of ILs show different influence on chiral separation of the analytes in the CLE‐CE system, which could be understood by their direct influence on EOF. Meanwhile, the variation of anion in the structure of ILs displayed remarkably changed performance and the ILs with Cl? showed the most obvious promoting effect on the chiral separation performance. Among the investigated seven ILs, 1‐butyl‐3‐methylimidazolium chloride was validated to be the proper electrolyte additive in the CLE‐CE system. Moreover, it has been observed that 1‐butyl‐3‐methylimidazolium chloride also has obvious promotive effect on the labeling performance. The results have demonstrated that the ILs with different structures have important relation to their performance in CLE‐CE and to their labeling efficiency in dansylation of the analytes.  相似文献   

13.
Chankvetadze B 《Electrophoresis》2002,23(22-23):4022-4035
Enantiomer migration order (EMO) in chiral capillary electrophoresis (CE) represents a challenging issue, referred to in less than 20% of the articles on CE enantioseparations. This review article will (i) illustrate the actuality of the topic, (ii) discuss some technical problems related to EMO in CE enantioseparations, (iii) examine the principal differences between CE and other separation techniques from the viewpoint of enantiomer elution order, (iv) demonstrate the potential for a designed reversal of EMO in CE, and (v) emphasize the importance of studying EMO for better understanding of chiral CE as well as its more effective application. Along with CE, the results obtained by other instrumental techniques such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), X-ray crystallography, as well as molecular modeling calculations will be shortly discussed. Rather than referring to all published examples of the opposite migration order of enantiomers in CE, the emphasis will be on general aspects. Recently, the reversal of the EMO was described in detail in a book chapter (Chankvetadze, B., Capillary Electrophoresis in Chiral Analysis, Wiley & Sons, Chichester, UK 1997, Chapter 12) as well as in three review articles.  相似文献   

14.
Enantioseparation of chiral products has become increasingly important in a large diversity of academic and industrial applications. The separation of chiral compounds is inherently challenging and thus requires a suitable analytical technique that can achieve high resolution and sensitivity. In this context, CE has shown remarkable results so far. Chiral CE offers an orthogonal enantioselectivity and is typically considered less costly than chromatographic techniques, since only minute amounts of chiral selectors are needed. Several CE approaches have been developed for chiral analysis, including chiral EKC and chiral CEC. Enantioseparations by EKC benefit from the wide variety of possible pseudostationary phases that can be employed. Chiral CEC, on the other hand, combines chromatographic separation principles with the bulk fluid movement of CE, benefitting from reduced band broadening as compared to pressure-driven systems. Although UV detection is conventionally used for these approaches, MS can also be considered. CE-MS represents a promising alternative due to the increased sensitivity and selectivity, enabling the chiral analysis of complex samples. The potential contamination of the MS ion source in EKC-MS can be overcome using partial-filling and counter-migration techniques. However, chiral analysis using monolithic and open-tubular CEC-MS awaits additional method validation and a dedicated commercial interface. Further efforts in chiral CE are expected toward the improvement of existing techniques, the development of novel pseudostationary phases, and establishing the use of chiral ionic liquids, molecular imprinted polymers, and metal-organic frameworks. These developments will certainly foster the adoption of CE(-MS) as a well-established technique in routine chiral analysis.  相似文献   

15.
This article reviews the latest developments in the application of capillary electromigration methods for the analysis of foods and food components. Nowadays, methods based on CE techniques are becoming widely used in food analytical and research laboratories. This review covers the application of CE to analyze amino acids, biogenic amines, peptides, proteins, DNAs, carbohydrates, phenols, polyphenols, pigments, toxins, pesticides, vitamins, additives, small organic and inorganic ions, chiral compounds, and other compounds in foods, as well as to investigate food interactions and food processing. The use of microchips as well as other foreseen trends in CE analysis of foods is discussed. Papers that were published during the period June 2002-June 2005 are included following the previous review by Frazier and Papadopoulou (Electrophoresis 2003, 24, 4095-4105).  相似文献   

16.
This review summarizes the current status of enantioseparations using capillary electromigration techniques and gives the authors insights on the selected fundamental aspects and future trends in this field. The most recent developments in the field of chiral separations using capillary electrophoresis (CE) and capillary electrochromatography (CEC) are summarized. The status of chiral electromigration techniques is evaluated tacking into account the most recent developments in related techniques such as chiral HPLC, GC and SFC.  相似文献   

17.
Enantiomers represent a class of compounds extensively investigated since they can show totally different behaviors when they interact with a chiral environment. Because of their identical chemical structure (they differ only in the spatial arrangement of the atoms in the molecule), the separation of optical isomers is a challenging task of analytical chemistry. So far employed methods for the separation of enantiomers are mainly based on chromatography. CE as well was considered as an analytical technique suitable for chiral separations, characterized by high efficiency and low consumption of reagent. Recently, miniaturization was introduced in LC to answer the needs to perform analyses in the minimum time, to use the smallest amount of samples and to reduce environmental pollution. Nano‐LC represents nowadays a valid alternative to the abovementioned conventional analytical techniques, and can be advantageously exploited for enantiomeric separation especially because it needs minute amounts of the chiral material necessary to carry out enantiomeric separations. This review describes the development and applications of nano‐LC in the field of chiral separations. The data reported in literature show its relevance for the study enantiomers‐chiral selectors interaction, as well as for application in pharmaceutical and clinical research.  相似文献   

18.
Capillary electrophoresis (CE) has a significant role in drug discovery and manufacturing processes and has a potential to grow further, due to new developments that can provide highly sensitive and high throughput analysis. This review illustrates recent applications of CE in pharmaceutical analysis (2005-present). The history, principles, instruments, and conventional modes of CE are briefly described. Applications for drug analysis by various techniques of CE are presented in six tables: capillary zone electrophoresis (CZE) (Table I), micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) (Table II), non-aqueous CE (NACE) (Table III), chiral CE (Table IV), CE-mass spectrometry (MS) microchip CE (Table V), and multiplexed CE (MCE) (Table VI).  相似文献   

19.
This review covers the application of capillary electromigration methods to analyze foods and food components, including amino acids, biogenic amines, peptides, proteins, DNAs, carbohydrates, phenols, polyphenols, pigments, toxins, pesticides, vitamins, additives, small organic and inorganic ions, chiral compounds, and other compounds in foods, as well as those applications of CE for monitoring food interactions and food processing. The use of microchips as well as other foreseen trends in food analysis by CE are discussed. Papers that were published during the period June 2005-March 2007 are included following the previous review by Cifuentes (Electrophoresis 2006, 27, 283-303).  相似文献   

20.
《Electrophoresis》2017,38(9-10):1383-1390
We recently reported that a great variety of DNA oligonucleotides (ONs) used as chiral selectors in partial‐filling capillary electrophoresis (CE) exhibited interesting enantioresolution properties toward low‐affinity DNA binders. Herein, the sequence prerequisites of ONs for the CE enantioseparation process were studied. First, the chiral resolution properties of a series of homopolymeric sequences (Poly‐dT) of different lengths (from 5 to 60‐mer) were investigated. It was shown that the size increase‐dependent random coil‐like conformation of Poly‐dT favorably acted on the apparent selectivity and resolution. The base‐unpairing state constituted also an important factor in the chiral resolution ability of ONs as the switch from the single‐stranded to double‐stranded structure was responsible for a significant decrease in the analyte selectivity range. Finally, the chemical diversity enhanced the enantioresolution ability of single‐stranded ONs. The present work could lay the foundation for the design of performant ON chiral selectors for the CE separation of weak DNA binder enantiomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号