首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen mimetic dendrimers   总被引:2,自引:0,他引:2  
The synthesis of single-chain, scaffold (TRIS)- and dendrimer-assembled collagen mimetics (both Gly-Pro-Nleu and Gly-Nleu-Pro sequences) is reported. From the CD spectra and the thermal denaturation studies it can be readily seen that mimetics prepared from the Gly-Nleu-Pro sequence form more thermally stable triple helices than the Gly-Pro-Nleu sequence. Furthermore, the 162-residue collagen mimetic dendrimers exhibit enhanced triple helical stability compared to equivalent scaffold-terminated structures by a substantial increase in the melting temperature in H2O and 2:1 EG/H2O. The concentration dependence for the melting transition was measured which determined that the stabilization effect arises from the intramolecular clustering of the triple helical arrays about the core structure. This ensemble excludes solvent from the interior portion of the array which stabilizes the triple helical bundle.  相似文献   

2.
A new triacid scaffold is described based on the cone-shaped cyclotriveratrylene (CTV) molecule that facilitates the triple helical folding of peptides containing either a unique blood platelet binding collagen sequence or collagen peptides composed of Pro-Hyp-Gly repeats. The latter were synthesized by segment condensation using Fmoc-Pro-Hyp-Gly-OH. Peptides were coupled to this CTV scaffold and also coupled to the Kemp's triacid (KTA) scaffold. After assembly of peptide H-Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu(OAll)-Arg-Gly-Val-Glu (OAll)-Gly-[Pro-Hyp-Gly]2-NH2 (13) by an orthogonal synthesis strategy to both triacid scaffolds, followed by deprotection of the allyl groups, the molecular constructs spontaneously folded into a triple helical structure. In contrast, the non-assembled peptides did not. The melting temperature (Tm) of (+/-) CTV[CH2C(O)N(H)Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu-Arg-Gly-Val-Glu-Gly- [Pro-Hyp-Gly]2-NH2]3 (14) is 19 degrees C, whereas KTA[Gly-Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu-Arg-Gly-Val-Glu-Gly- [Pro-Hyp-Gly]2-NH2]3 (15) has a Tm of 20 degrees C. Thus, it was shown for the first time that scaffolds were also effective in stabilizing the triple helix of native collagen sequences. The different stabilizing properties of the two CTV enantiomers could be measured after coupling of racemic CTV triacid to the collagen peptide, and subsequent chromatographic separation of the diastereomers. After assembly of the two chiral CTV scaffolds to the model peptide H-Gly-Gly-(Pro-Hyp-Gly)5-NH2 (24), the (+)-enantiomer of CTV 28b was found to serve as a better triple helix-inducing scaffold than the (-)-enantiomer 28a. In addition to an effect of the chirality of the CTV scaffold, a certain degree of flexibility between the CTV cone and the folded peptide was also shown to be of importance. Restricting the flexibility from two to one glycine residues resulted in a significant difference between the two collagen mimics 20a and 20b, whereas the difference was only slight when two glycine residues were present between the CTV scaffold and the peptide sequence in collagen mimics 30a and 30b.  相似文献   

3.
The variation of the size of the capping scaffold which connects the hydroxypyridonate (HOPO) binding units in a series of tripodal chelators for gadolinium (Gd) complexes has been investigated. A new analogue of TREN-1-Me-3,2-HOPO (1) (TREN = tri(ethylamine)amine) was synthesized: TREN-Gly-1-Me-3,2-HOPO (2) features a glycine spacer between the TREN cap and HOPO binding unit. TRPN-1-Me-3,2-HOPO (3) has a propylene-bridged cap, as compared to the ethylene bridges within the TREN cap of the parent complex. Thermodynamic equilibrium constants for the acid-base properties of 2 and the Gd(3+) complexation strength of 2 and 3 were measured and are compared with that of the parent ligand. The most basic ligand is 2 while 3 is the most acidic. Both 2 and 3 form Gd(3+) complexes of similar stability (pGd = 16.7 and 15.6, respectively) and are less stable than the parent complex Gd-1 (pGd = 19.2). Two of the three complexes are more stable than the bis(methylamide)diethylenetriamine pentaacetate complex Gd(DTPA-BMA) (pGd = 15.7) while the other is of comparable stability. Enlargement of the ligand scaffold decreases the stability of the Gd(3+) complexes and indicates that the TREN scaffold is superior to the TRPN and TREN-Gly scaffolds. The proton relaxivity of Gd-2 is 6.6 mM(-)(1) s(-)(1) (20 MHz, 25 degrees C, pH 7.3), somewhat lower than the parent Gd-1 but higher than that of the MRI contrast agents in clinical practice. The pH-independent relaxivity of Gd-2 is uncharacteristic of this family of complexes and is discussed.  相似文献   

4.
New chemistries have been developed for de novo protein design. Protein mimetics of different structural and functional properties such as synthetic peptide ligases and Dn symmetrical helical bundles have been reported. The Template-Assembled Synthetic Protein (TASP) method (as well as the ßMolecular Kit' approach) has also been utilized to prepare protein-like molecules. Here we report the synthesis of single chain, scaffold (TRIS)- and dendrimer-assembled collagen mimetics composed of the Gly-Nleu-Pro sequence where Nleu denotes N-isobutyl glycine. From the CD spectra and the thermal denaturation studies it can be seen that the collagen mimetics prepared form stable triple helices except the single chain structure. Furthermore, the 162-residue collagen mimetic dendrimer exhibits enhanced triple helical stability compared to the equivalent scaffold-terminated structure by an increase in the melting temperature in both H2O and 2:1 ethylene glycol/H2O (4°C and 12°C respectively). The concentration dependence for the melting transition of the collagen mimetic dendrimer was measured from which it was determined that the stabilization effect arises from the intramolecular clustering of the triple helical arrays about the core structure. This ensemble excludes solvent from the interior portion of the array which stabilizes the triple helix cluster.  相似文献   

5.
A binuclear complex of Zn(ii) with formula [Zn(dap(A)(2))](2).2.25DMF (.2.25DMF) and a Mn(ii) coordination polymer with formula [Mn(3)(dap(In)(2))(3)(H(2)O)(2).2DMSO](n) (.2DMSO)(n) have been prepared and structurally characterized [dap(A)(2) = dideprotonated form of 2,6-diacetylpyridine bis(anthraniloyl hydrazone); dap(In)(2) = doubly deprotonated form of 2,6-diacetylpyridine bis(isonicotinoyl hydrazone)]. In the Zn(ii) complex the molecular units are double helical, with the Zn(ii) ions in a square pyramidal environment. The Mn(ii) complex on the other hand is a coordination polymer containing two different types of hepta-coordinated Mn(ii) ions, which differ in their axial ligands. The magnetic properties of the Mn(ii) complex, along with those of a double helical pyridine bridged binuclear Ni(ii) complex, earlier synthesized by us, are also reported. The ability of the 2,6-diacetylpyridine bis(aroyl hydrazone) ligands to form double helical complexes is analyzed in terms of the conformational flexibility of the ligands. The differences in the magnetic properties of the micro-N bridged binuclear complexes formed by 1,1 azido N-bridging ligands, and pyridine N-bridging ligands, is analyzed with the help of EHMO calculations.  相似文献   

6.
Three novel 3,5-diamino-1,2,4-triazole (Hdatrz)-based Co(II) coordination complexes, [Co(Hdatrz)(0.5)(H(2)O)(2)(btec)(0.5)](n) (1), {[Co(Hdatrz)(Hbtc)]·H(2)O}(n) (2) and [Co(2)(datrz)(2)(nb)(2)](n) (3) (H(4)btec = 1,2,4,5-benzenetetracarboxylic acid, H(3)btc = 1,3,5-benzenetricarboxylic acid and Hnb = 4-nitrobenzoic acid), were synthesized by incorporating different carboxylate-containing co-ligands and then were structurally and magnetically characterized. Complex 1 is a 3D pillared-layer framework with corrugated Co(II)-btec(4-) layers supported by neutral μ(2)-N1, N4-Hdatrz ligands. In contrast, the other two complexes are chiral (4, 4)- and racemic (4, 8(2))-topological layers with asymmetric μ(2)-N1, N4-Hdatrz-bridged helical chains extended by bis-monodentate Hbtc(2-) ligands for 2 and with a μ(3)-N1, N2, N4-datrz((-)) aggregated Shastry-Sutherland magnetic layer for 3. More interestingly, different magnetic phenomena with a field-induced metamagnetic transition from antiferromagnetic ordering to a ferromagnetic state for 1, spin-canted antiferromagnetism with a T(N) lower than 2.0 K for 2, as well as the coexistence of spin frustration and spin-flop transitions for 3 were observed, which, significantly, are governed by the local low-dimensional magnetic motifs mediated by the carboxylate and/or triazolate heterobridges in the anisotropic Co(II)-triazolate system.  相似文献   

7.
Five new Zn(II)/Cd(II) coordination polymers constructed from di(1H-imidazol-1-yl)methane (L) mixed with different auxiliary carboxylic acid ligands formulated as [Zn(L)(H(2)L(1))(2)·(H(2)O)(0.2)](n) (1), {[Zn(L)(L(2))]·H(2)O}(n) (2), {[Cd(2)(L)(2)(L(2))(2)]·2H(2)O}(n) (3), {[Cd(L)(L(3))]·H(2)O}(n) (4) and [Cd(L)(L(4))](n) (5) (H(3)L(1) = 1,3,5-benzenetricarboxylic acid, H(2)L(2) = 4,4'-oxybis(benzoic acid), H(2)L(3) = m-phthalic acid and H(2)L(4) = p-phthalic acid) have been synthesized under hydrothermal conditions and structurally characterized. Four related auxiliary carboxylic acids were chosen to examine the influences on the construction of these coordination frameworks with distinct dimensionality and connectivity. The coordination arrays of 1-5 vary from 1D zigzag chain for 1, 2D (4,4) layer for 2-4, to 2-fold interpenetrated 3D coordination network with the α-Po topology for 5. The thermal and photoluminescence properties of complexes 1-5 in the solid state have also been investigated.  相似文献   

8.
A novel cobalt(II)-organic framework, [Co2(OH)(3,4-PBC)3]n (I), has been acquired by the reaction of CoO with an unsymmetrical pyridylbenzoate ligand, 3-pyrid-4-ylbenzoic acid (3,4-PBC). Single-crystal X-ray diffraction studies reveal that it is comprised of [CoII4(mu3-OH)2] clusters linked by the unsymmetrical ligand 3,4-PBC, forming a novel helical double-layered metal-organic architecture. A significant overall antiferromagnetic behavior has been observed for this compound.  相似文献   

9.
Zhang XM  Wang YQ  Song Y  Gao EQ 《Inorganic chemistry》2011,50(15):7284-7294
Three transition-metal coordination polymers with azide and/or carboxylate bridges have been synthesized from 4-(3-pyridyl)benzoic acid (4,3-Hpybz) and 4-(4-pyridyl)benzoic acid (4,4-Hpybz) and characterized by X-ray crystallography and magnetic measurements. Compound 1, [Cu(4,3-pybz)(N(3))](n), consists of 2D coordination networks in which the uniform chains with (μ-EO-N(3))(μ-COO) double bridges are cross-linked by the 4,3-pybz ligands. Compound 2, [Cu(2)(4,4-pybz)(3)(N(3))](n)·3nH(2)O, consists of 2-fold interpenetrated 3D coordination networks with the α-Po topology, in which the six-connected dinuclear motifs with mixed (μ-EO-N(3))(μ-COO)(2) (EO = end-on) triple bridges are linked by the 4,4-pybz spacers. Compound 3, [Mn(4,4-pybz)(N(3))(H(2)O)(2)](n), contains 2D manganese(II) coordination networks in which the chains with single μ-EE-N(3) bridges (EE = end-to-end) are interlinked by the 4,4-pybz ligands, and the structure also features a 2D hydrogen-bonded network in which Mn(II) ions are linked by double triatomic bridges, (μ-EE-N(3))(O-H···N) and (O-H···O)(2). Magnetic studies indicated that the mixed azide and carboxylate bridges in 1 and 2 induce ferromagnetic coupling between Cu(II) ions and that 3 features antiferromagnetic coupling through the EE-azide bridge. In addition, compound 1 exhibits antiferromagnetic ordering below 6.2 K and behaves as a field-induced metamagnet. A magnetostructural survey indicates a general trend that the ferromagnetic coupling through the mixed bridges decreases as the Cu-N-Cu angle increases.  相似文献   

10.
The tripodal ligands composed of the 1,3,5-trisubstituted cyclohexyl moiety as a molecular scaffold and 2-phenylpyridyl moieties as a coordination site were designed. The homoleptic cyclometalated fac-Ir(C^N)(3) complexes could be obtained by the reaction of IrCl(3)·nH(2)O with the designed tripodal ligands. The single crystal X-ray structure determination confirmed the fac configuration and a distorted octahedral geometry with three intramolecular cyclometalated 2-phenylpyridyl ligands surrounding the iridium metal center. Also, the cyclohexyl scaffold was found to serve as a flexible scaffold to induce the fac configuration. The thus-obtained homoleptic cyclometalated fac-Ir(C^N)(3) complexes exhibited a broad emission band in the emission spectra at 298 K.  相似文献   

11.
The reaction of the complex [Au2Ag2(C6F5)4)N[triple bond]CCH3)2]n (1) with 1 equiv of CuCl in the presence of 1 equiv of pyrimidine ligand leads to the formation of the heteronuclear Au(I)-Cu(I) organometallic polymer [Cu{Au(C6F5)2}(N[triple bond]CCH3)(mu2-C4H4N2)]n (2) through a transmetalation reaction. Complex 2 displays unprecedented unsupported Au(I)...Cu(I) interactions of [Au(C6F5)2]- units with the acid Cu(I) sites in a [Cu(N[triple bond]CCH3)(mu2-pyrimidine)]n+(n) polymeric chain. Complex 2 has a rich photophysics in solution and in the solid state.  相似文献   

12.
A series of soluble trinuclear copper(I) and silver(I) complexes containing bicapped diynyl ligands, [M(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CR)(2)]PF(6) (M = Cu, R = Ph, C(6)H(4)-CH(3)-p, C(6)H(4)-OCH(3)-p, (n)C(6)H(13), H; M = Ag, R = Ph, C(6)H(4)-OCH(3)-p), has been synthesized and their electronic, photophysical, and electrochemical properties studied. The X-ray crystal structures of [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CPh)(2)]PF(6) and [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CH)(2)]PF(6) have been determined.  相似文献   

13.
Two equivalents of Ph(2)PC triple bond CR (R=H, Me, Ph) react with thf solutions of cis-[Ru(acac)(2)(eta(2)-alkene)(2)] (acac=acetylacetonato; alkene=C(2)H(4), 1; C(8)H(14), 2) at room temperature to yield the orange, air-stable compounds trans-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=H, trans-3; Me=trans-4; Ph, trans-5) in isolated yields of 60-98%. In refluxing chlorobenzene, trans-4 and trans-5 are converted into the yellow, air-stable compounds cis-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=Me, cis-4; Ph, cis-5), isolated in yields of ca. 65%. From the reaction of two equivalents of Ph(2)PC triple bond CPPh(2) with a thf solution of 2 an almost insoluble orange solid is formed, which is believed to be trans-[Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))](n) (trans-6). In refluxing chlorobenzene, the latter forms the air-stable, yellow, binuclear compound cis-[{Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))}(2)] (cis-6). Electrochemical studies indicate that cis-4 and cis-5 are harder to oxidise by ca. 300 mV than the corresponding trans-isomers and harder to oxidise by 80-120 mV than cis-[Ru(acac)(2)L(2)] (L=PPh(3), PPh(2)Me). Electrochemical studies of cis-6 show two reversible Ru(II/III) oxidation processes separated by 300 mV, the estimated comproportionation constant (K(c)) for the equilibrium cis-6(2+) + cis6 <=> 2(cis-6(+)) being ca. 10(5). However, UV-Vis spectra of cis-6(+) and cis-6(2+), generated electrochemically at -50 degrees C, indicate that cis-6(+) is a Robin-Day Class II mixed-valence system. Addition of one equivalent of AgPF(6) to trans-3 and trans-4 forms the green air-stable complexes trans-3 x PF(6) and trans-4 x PF(6), respectively, almost quantitatively. The structures of trans-4, cis-4, trans-4 x PF(6) and cis-6 have been confirmed by X-ray crystallography.  相似文献   

14.
The reactions of manganese(II) acetate or perchlorate, sodium azide or sodium cyanate, and the zwitterionic dicarboxylate ligand 1,4-bis(4-carboxylatopyridinium-1-methylene)benzene (L) under different conditions yielded three different Mn(II) coordination polymers with mixed carboxylate and azide (or cyanate) bridges: {[Mn (L(1))(0.5)(N(3))(OAc)]·3H(2)O}(n) (1), {[Mn(4)(L(1))(N(3))(8)(H(2)O)(4)(CH(3)OH)(2)]·[L(1)]}(n) (2), and {[Mn(3)(L(1))(NCO)(6)(H(2)O)(4)]·[L(1)]·[H(2)O](2)}(n) (3). The compounds exhibit diverse structures and magnetic properties. In 1, the 1D uniform anionic [Mn(N(3))(COO)(2)](n) chains with the (μ-EO-N(3))(μ-COO)(2) triple bridges (EO = end-on) are interlinked by the dipyridinium L ligands into highly undulated 2D layers. Magnetic studies on 1 reveal that the mixed triple bridges induce antiferromagnetic coupling between Mn(II) ions. Compounds 2 and 3 consist of 1D neutral polymeric chains and co-crystallized zwitterions, and the chains are formed by the L ligands interlinking linear polynuclear units. The polynuclear unit in 2 is tetranuclear with (μ-EO-N(3))(2) as central bridges and (μ-EO-N(3))(2)(μ-COO) as peripheral bridges, while that in 3 is trinuclear with (μ-NCO)(2)(μ-COO) bridges. Magnetic studies demonstrate that the magnetic coupling through the mixed azide/isocyanate and carboxylate bridges in 2 and 3 is antiferromagnetic. An expression of magnetic susceptibility based on a 2-J model for linear tetranuclear systems of classical spins has been deduced and applied to 2.  相似文献   

15.
Two new heterometallic Ni(II)(n)Cu(II)((9-n)) complexes [n = 1 (2) and 2 (3)] have been synthesized following a multicomponent self-assembly process from a n:(3 - n):2:6 stoichiometric mixture of Ni(2+), Cu(2+), L(6-), and [CuL'](2+), where L and L' are the bridging and blocking ligands 1,3,5-benzenetris(oxamate) and N,N,N',N',N'-pentamethyldiethylenetriamine, respectively. Complexes 2 and 3 possess a unique cyclindrical architecture formed by three oxamato-bridged trinuclear linear units connected through two 1,3,5-substituted benzenetris(amidate) bridges, giving a triangular metallacyclophane core. They behave as a ferromagnetically coupled trimer of two (2)/one (3) S = (1)/(2) Cu(II)(3) plus one (2)/two (3) S = 0 Ni(II)Cu(II)(2) linear units with overall S = 1 Ni(II)Cu(II)(8) (2) and S = (1)/(2) Ni(II)(2)Cu(II)(7) (3) ground states.  相似文献   

16.
The complex formation of vanadium(IV) with 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci) and 1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol (tdci) was studied in aqueous solution and in the solid state. The formation constants of [V(IV)O(taci)](2+), [V(IV)O(tdci)](2+), and [V(IV)(tdci)(2)](4+) and of the deprotonation product [V(IV)(tdci)(2)H(-)(1)](3+) were determined (25 degrees C, 0.1 M KNO(3)). Cyclic voltammetry measurements established a reversible one-electron transfer for the [V(IV)(tdci)(2)H(-)(m)]((4)(-)(m))/[V(III)(tdci)(2)H(-)(n)]((3)(-)(n)) couple (0 相似文献   

17.
We have synthesized and characterized a series of trinuclear gold(I) complexes [(AuX)(3)(mu-triphos)] (triphos = bis(2-diphenylphosphinoethyl)phenylphosphine; X = Cl 1, Br 2, I 3, C(6)F(5) 4) and di- and trinuclear gold(III) complexes [[Au(C(6)F(5))(3)](n)(mu-triphos)] (n = 2 (5), 3 (6)). The crystal structure of 6 [[Au(C(6)F(5))(3)](3)(mu-triphos)] has been determined by X-ray diffraction studies, which show the triphosphine in a conformation resulting in very long gold-gold distances, probably associated with the steric requirements of the tris(pentafluorophenyl)gold(III) units. Complex 6 crystallizes in the triclinic space group P(-1) with a = 12.7746(16) A, b = 18.560(2) A, c = 21.750(3) A, alpha = 98.215(3) degrees, beta = 101.666(3) degrees, gamma = 96.640(3) degrees, and Z = 2. Chloride substitutions in complex 1 afford trinuclear gold(I) complexes [(AuX)(3)(mu-triphos)] (X = Fmes (1,3,5-tris(trifluoromethyl)phenyl) 7, p-SC(6)H(4)Me 8, SCN 9) and [Au(3)Cl(3)(-)(n)()(S(2)CNR(2))(n)(mu-triphos)] (R = Me, n = 3 (10), 2 (12), 1 (14); R = CH(2)Ph, n = 3 (11), 2 (13), 1 (15)). The luminescence properties of these complexes in the solid state have been studied; at low temperature most of them are luminescent, including the gold(III) derivative 6, with the intensity and the emission maxima being clearly influenced by the nature and the number of the ligands bonded to the gold centers.  相似文献   

18.
Two organically-templated layered uranium(IV) fluorooxalates, (H(4)TREN)[U(2)F(6)(C(2)O(4))(3)].4H(2)O (1) (TREN = tris(2-aminoethyl)amine) and (H(4)APPIP)[U(2)F(6)(C(2)O(4))(3)].4H(2)O (2) (APPIP = 1,4-bis(3-aminopropyl)piperazine), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic susceptibility. Both structures consist of anionic [U(2)F(6)(C(2)O(4))(3)](4-) layers separated by organic ammonium cations and lattice water molecules. The UF(3)O(6) polyhedra are connected by oxalate ligands in different ways within the layers. They are the first examples of organically-templated uranium fluorooxalates. Crystal data for compound 1 follow: monoclinic, P2(1)/c (No. 14), a = 19.1563(5) A, b = 8.9531(2) A, c = 16.6221(4) A, beta = 114.633(1) degrees, and Z = 4. Crystal data for compound are the same as those for 1 except a = 10.3309(8) A, b = 15.564(1) A, c = 17.537(1) A, and beta = 95.430(4) degrees.  相似文献   

19.
Tan LF  Liu J  Shen JL  Liu XH  Zeng LL  Jin LH 《Inorganic chemistry》2012,51(8):4417-4419
Stabilization of triple helical structures is extremely important for carrying out their biological functions. Nucleic acid triple helices may be formed with DNA or RNA strands. In contrast to many studies in DNA, little has been reported concerning the recognition of the RNA triplex by transition-metal complexes. In this article, [Ru(phen)(2)(mdpz)](2+) (Ru1) is the first metal complex able to enhance the stability of the RNA triplex Poly(U)·Poly(A)*Poly(U) and serve as a prominent molecular "light switch" for the RNA triplex.  相似文献   

20.
A novel series of [PtTl(2)(C[triple chemical bond]CR)(4)](n) (n = 2, R = 4-CH(3)C(6)H(4) (Tol) 1, 1-naphthyl (Np) 2; n = infinity, R = 4-CF(3)C(6)H(4) (Tol(F)) 3) complexes has been synthesized by neutralization reactions between the previously reported [Pt(C[triple chemical bond]CR)(4)](2-) (R = Tol, Tol(F)) or novel (NBu(4))(2)[Pt(C[triple chemical bond]CNp)(4)] platinum precursors and Tl(I) (TlNO(3) or TlPF(6)). The crystal structures of [Pt(2)Tl(4)(C[triple chemical bond]CTol)(8)]4 acetone, 14 acetone, [Pt(2)Tl(4)(C[triple chemical bond]CNp)(8)]3 acetone1/3 H(2)O, 23 acetone 1/3 H(2)O and [[PtTl(2)(C[triple chemical bond]CTol(F))(4)](acetone)S](infinity) (S = acetone 3 a; dioxane 3 b) have been solved by X-ray diffraction studies. Interestingly, whereas in the tolyl (1) and naphthyl (2) derivatives, the thallium centers exhibit a bonding preference for the electron-rich alkyne entities to yield crystal lattices based on sandwich hexanuclear [Pt(2)Tl(4)(C[triple chemical bond]CR)(8)] clusters (with additional Tlacetone (1) or Tlnaphthyl (2) secondary interactions), in the C(6)H(4)CF(3) (Tol(F)) derivatives 3 a and 3 b the basic Pt(II) center forms two unsupported Pt-Tl bonds. As a consequence 3 a and 3 b form an extended columnar structure based on trimetallic slipped PtTl(2)(C[triple chemical bond]CTol(F))(4) units that are connected through secondary Tl(eta(2)-acetylenic) interactions. The luminescent properties of these complexes, which in solution (blue; CH(2)Cl(2) 1,2; acetone 3) are very different to those in solid state (orange), have been studied. Curiously, solid-state emission from 1 is dependent on the presence of acetone (green) and its crystallinity. On the other hand, while a powder sample of 3 is pale yellow and displays blue (457 nm) and orange (611 nm) emissions, the corresponding pellets (KBr, solid) of 3, or the fine powder obtained by grinding, are orange and only exhibit a very intense orange emission (590 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号