首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The proton- and the sodium ion-bound glycine homodimers are studied by a combination of infrared multiple photon dissociation (IRMPD) spectroscopy in the N-H and O-H stretching region and electronic structure calculations. For the proton-bound glycine dimer, in the region above 3100 cm (-1), the present spectrum agrees well with one recorded previously. The present work also reveals a weak, broad absorption spanning the region from 2650 to 3300 cm (-1). This feature is assigned to the strongly hydrogen-bonded and anharmonic N-H and O-H stretching modes. As well, the shared proton stretch is observed at 2440 cm (-1). The IRMPD spectra for the proton-bound glycine dimer confirms that the lowest energy structure is an ion-dipole complex between N-protonated glycine and the carboxyl group of the second glycine. This spectrum also helps to eliminate the existence of any of the higher-energy structures considered. The IRMPD spectrum for the sodium ion-bound dimer is a much simpler spectrum consisting of three bands assigned to the O-H stretch and the asymmetric and symmetric NH 2 stretching modes. The positions of these bands are very similar to those observed for the proton-bound glycine dimer. Numerous structures were considered and the experimental spectrum agrees with the B3LYP/6-31+G(d,p) predicted spectrum for the lowest energy structure, two bidentate glycine molecules bound to Na (+). Though some of the structures cannot be completely ruled out by comparing the experimental and theoretical spectra, they are energetically disfavored by at least 20 kJ mol (-1).  相似文献   

2.
The infrared multiphoton dissociation (IRMPD) spectra of three homogenous proton-bound dimers are presented and the major features are assigned based on comparisons with the neutral alcohol and with density functional theory calculations. As well, the IRMPD spectra of protonated propanol and the propanol/water proton-bound dimer (or singly hydrated protonated propanol) are presented and analysed. Two primary IRMPD photoproducts were observed for each of the alcohol proton bound dimers and were found to vary with the frequency of the radiation impinging upon the ions. For example, when the proton-bound dimer absorbs weakly a larger amount of S(N)2 product, protonated ether and water, are observed. When the proton-bound dimer absorbs more strongly, an increase in the simple dissociation product, protonated alcohol and neutral alcohol, is observed. With the aid of RRKM calculations this frequency dependence of the branching ratio is explained by assuming that photon absorption is faster than dissociation for these species and that only a few photons extra are necessary to make the higher-energy dissociation channel (simple cleavage) competitive with the lower energy (S(N)2) reaction channel.  相似文献   

3.
Zwitterionic structures exist extensively in biological systems and the electric field resulting from zwitterion formation is the driving force for determination of the properties, function and activity of biological molecules, such as amino acids, peptides and proteins. It is of considerable interest and import to investigate the stabilization of zwitterionic structures in the gas phase. Infrared multiple photon dissociation (IRMPD) spectroscopy is a very powerful and sensitive technique, which may elucidate clearly the structures of both ions and ionic clusters in the gas phase, since it provides IR vibrational fingerprint information. The structures of the clusters of glycine and ammonium ion and of the betaine proton-bound homodimer have been investigated using IRMPD spectroscopy, in combination with electronic structure calculations. The experimental and calculated results indicate that zwitterionic structure of glycine may be effectively stabilized by an ammonium ion. This is the smallest zwitterionic structure of an amino acid to be demonstrated in the gas phase. On the basis of the experimental IRMPD and calculated results, it is very clear that a zwitterionic structure exists in the proton-bound betaine dimer. The proton is bound to one of the carboxylate oxygens of betaine, rather than being equally shared. Investigations of zwitterionic structures in the isolated state are essential for an understanding of the intrinsic characteristics of zwitterions and salt bridge interactions in biological systems.  相似文献   

4.
Structural characterization of protonated gas-phase ions of cysteine and dopamine by infrared multiple photon dissociation (IRMPD) spectroscopy using a free electron laser in combination with theory based on DFT calculations reveals the presence of two types of protonated dimer ions in the electrospray mass spectra of the metabolites. In addition to the proton-bound dimer of each species, the covalently bound dimer of cysteine (bound by a disulfide linkage) has been identified. The dimer ion of m/z 241 observed in the electrospray mass spectra of cysteine has been identified as protonated cystine by comparison of the experimental IRMPD spectrum to the IR absorption spectra predicted by theory and the IRMPD spectrum of a standard. Formation of the protonated covalently bound disulfide-linked dimer ions (i.e. protonated cystine) from electrospray of cysteine solution is consistent with the redox properties of cysteine. Both the IRMPD spectra and theory indicate that in protonated cystine the covalent disulfide bond is retained and the proton is involved in intramolecular hydrogen bonding between the amine groups of the two cysteine amino acid units. For cysteine, the protonated covalently bound dimer (m/z 241) dominated the mass spectrum relative to the proton-bound dimer (m/z 243), but this was not the case for dopamine, where the protonated monomer and the proton-bound dimer were both observed as major ions. An extended conformation of the ethylammonium side chain of gas-phase protonated dopamine monomer was verified from the correlation between the predicted IR absorption spectra and the experimental IRMPD spectrum. Dopamine has the same extended ethylamine side chain conformation in the proton-bound dopamine dimer identified in the mass spectra of electrosprayed dopamine. The structure of the proton-bound dimer of dopamine is confirmed by calculations and the presence of an IR band due to the shared proton. The presence of the shared proton in the protonated cystine ion can be inferred from the IRMPD spectrum.
Figure
?  相似文献   

5.
Infrared multiphoton dissociation spectra of three homogeneous and two heterogeneous proton-bound dimers were recorded in the gas phase. Comparison of the experimental infrared spectra recorded in the fingerprint region of the proton-bound dimers with spectra predicted by electronic structure calculations shows that all modes which are observed contain motion of the proton oscillating between the two monomers. The O-H-O asymmetric stretch for the homogeneous dimers is shown to occur at around 800 cm-1. As expected, the O-H-O asymmetric stretching modes for the heterogeneous proton-bound dimers are observed to shift to significantly higher energy with respect to those for the homogeneous proton-bound dimers due to the asymmetry of the O-H-O moeity. This shift is shown to be predictable from the difference in proton affinities between the two monomers. Density functional predictions of the infrared spectra based on the harmonic oscillator model are demonstrated to predict the observed spectra of the homogeneous proton-bound dimers with reasonable accuracy. Calculations of the structure and infrared spectrum of protonated diglyme at the B3LYP/6-31+G** level and basis also agree well with an infrared spectrum recorded previously. For both heterogeneous proton-bound dimers, however, the predicted spectra are blue-shifted with respect to experiment.  相似文献   

6.
The homo- and heterochiral protonated dimers of asparagine with serine and with valine were investigated using infrared multiple-photon dissociation (IRMPD) spectroscopy. Extensive quantum-chemical calculations were used in a three-tiered strategy to screen the conformational spaces of all four dimer species. The resulting binary structures were further grouped into five different types based on their intermolecular binding topologies and subunit configurations. For each dimer species, there are eight to fourteen final conformational geometries within a 10 kJ mol−1 window of the global minimum structure for each species. The comparison between the experimental IRMPD spectra and the simulated harmonic IR features allowed us to clearly identify the types of structures responsible for the observation. The monomeric subunits of the observed homo- and heterochiral dimers are compared to the corresponding protonated/neutral amino acid monomers observed experimentally in previous IRMDP/rotational spectroscopic studies. Possible chirality and kinetic influences on the experimental IRMPD spectra are discussed.  相似文献   

7.
Electronic structure calculations (CBS-QB3 and G3MP2) have been used to predict a suitable method to experimentally observe the anomalous structure which is predicted to exist in a proton-bound dimer with a high dipole moment monomer. The enthalpy associated with forming the proton-bound dimer from its protonated and neutral monomers is shown to be linearly related to the difference in proton affinities which has been observed experimentally. However, unlike previous experimental studies, the linear correlation is not predicted to depend strongly, if at all, on whether the basic sites are C=O, C=N, or O(H) n-donor bases. Thermochemical measurements, then, are probably not the best method to distinguish between the structures of heterogeneous proton-bound dimers. It has been shown that a suitable method to experimentally observe the anomalous structure of proton-bound dimers containing a high dipole moment monomer (or very polar monomer) is by spectroscopic measurement. The O-H+-O asymmetric stretch is probably not the best infrared band to try to correlate with structure. The best band to observe is one which is in a region of the spectrum not masked by other absorptions and is also sensitive to the proximity of the binding proton. For example, it is shown that the methanol-free O-H stretch is very sensitive to the O-H+ bond distance for a series of heterogeneous proton-bound dimers containing methanol. It is predicted that the free O-H stretch of the methanol/acetonitrile proton-bound dimer is more closely related to the O-H stretch in protonated methanol than the O-H stretch in neutral methanol. Observations of these bands should confirm that the proton is closer to methanol in the methanol/acetonitrile proton-bound dimer despite acetonitrile having a higher proton affinity.  相似文献   

8.
The structure of the proton-bound lysine dimer has been investigated by infrared multiple photon dissociation (IRMPD) spectroscopy and electronic structure calculations. The structures of different possible isomers of the proton-bound lysine dimer have been optimized at the B3LYP/6-31 + G(d) level of theory and IR spectra calculated using the same computational method. Based on relative Gibbs free energies (298 K) calculated at the MP2/aug-cc-pVTZ//B3LYP/6-31 + G(d) level of theory, LL-CS01, and followed closely (1.1 kJ mol–1) by LL-CS02 are the most stable non-zwitterionic isomers. At the MP2/aug-cc-pVTZ//6-31 + G(d) and MP2/aug-cc-pVTZ//6-31 + (d,p) levels of theory, isomer LL-CS02 is favored by 3.0 and 2.3 kJ mol–1, respectively. The relative Gibbs free energies calculated by the aforementioned levels of theory for LL-CS01 and LL-CS02 are very close and strongly suggest that diagnostic vibrational signatures found in the IRMPD spectrum of the proton-bound dimer of lysine can be attributed to the existence of both isomers. LL-ZW01 is the most stable zwitterionic isomer, in which the zwitterionic structure of the neutral lysine is well stabilized by the protonated lysine moiety via a very strong intermolecular hydrogen bond. At the MP2/aug-cc-pVTZ//B3LYP/6-31 + G(d), MP2/aug-cc-pVTZ//6-31 + G(d) and MP2/aug-cc-pVTZ//6-31 + G(d,p) levels of theory, the most stable zwitterionic isomer (LL-ZW01) is less favored than LL-CS01 by 7.3, 4.1 and 2.3 kJ mol–1, respectively. The experimental IRMPD spectrum also confirms that the proton-bound dimer of lysine largely exists as charge-solvated isomers. Investigation of zwitterionic and charge-solvated species of amino acids in the gas phase will aid in a further understanding of structure, property, and function of biological molecules.  相似文献   

9.
Previous gas-phase methods for infrared photodissociation spectroscopy (IRPD) require sample volatility. Our method instead uses electrospray ionization to introduce even large nonvolatile molecules into a Fourier transform mass spectrometer, where extended (>15 s) ion storage makes possible high sensitivity spectral measurements with an OPO laser over a range of 3050-3800 cm(-1). The spectra of 22 gaseous proton-bound amino acid complexes are generally correlated with the H-stretching frequencies established for O-H and N-H functional groups in solution. For theoretical structure predictions of the Gly2H+ and N-acylated Asp2H+ dimers, IRPD spectra clearly differentiate between the predicted lowest energy conformers. In contrast to solution, in the gas phase the glycine zwitterion is approximately 20 kcal/mol less stable than the neutral; however, glycine is clearly zwitterionic in the gaseous GlyLysH+ dimer. The level of theory is inadequate for the larger Lys2H+ dimer, as all low energy predicted structures have free carboxyl O-H groups, in contrast to the IR spectrum. IRPD appears to be a promising new technique for providing unique information on a broad range of biomolecular and other gaseous ions, especially on noncovalent bonding involving O-H and N-H groups.  相似文献   

10.
Ionic hydrogen-bonding interactions have been found in several clusters formed by 5-fluorocytosine (5-FC). The chloride and trimethylammonium cluster ions, along with the cationic (proton-bound) dimer have been characterized by infrared multiple-photon dissociation (IRMPD) spectroscopy and electronic structure calculations performed at the B2PLYP/aug-cc-pVTZ//B3LYP/6-311+G(d,p) level of theory. IRMPD action spectra, in combination with calculated spectra and relative energetics, indicate that it is most probable that predominantly a single isomer exists in each experiment. For the 5-FC-trimethylammonium cluster specifically, the calculated spectrum of the lowest-energy isomer convincingly matches the experimental spectrum. Interestingly, the cationic dimer of 5-FC was found to have a single energetically relevant isomer (Cationic-IV) involving a tridentate ionic hydrogen-bonding interaction. The three sites of intermolecular ionic hydrogen bonds in this isomer interact very efficiently, leading to a significant calculated binding energy of 180 kJ/mol. The magnitude of the calculated binding energy for this species, in combination with the strong correlation between the simulated and IRMPD spectra, suggests that a tridentate-proton-bound dimer was observed predominantly in the experiments. Comparison of the calculated relative Gibbs free energies (298 K) for this species and several of the other isomers considered also supports the likelihood of the dominant protonated dimer existing as Cationic-IV.  相似文献   

11.
A new modification of pulsed-ionization high-pressure mass spectrometry (PHPMS) has been used to perform equilibrium thermochemical studies for relatively nonvolatile biomolecules such as amino acids. Binding enthalpy and entropy changes have been measured for proton-bound clusters of glycine, which are in good agreement with both theoretical (DFT) results of this work and a previous blackbody infrared dissociation experiment. Experimental data indicate that a number of conformers of the proton-bound dimer of glycine may coexist in the explored temperature range (360-460 K). Several new, conceptually different isomers (two of them zwitterionic) have been found by DFT calculations, one of which is 7 kJ mol(-1) lower in energy than the structure previously reported to be the energy minimum.  相似文献   

12.
The IRMPD spectra of the ESI-formed proton-bound complexes of the R,R,R,R- and S,S,S,S-enantiomers of a bis(diamido)-bridged basket resorcin[4]arene (R and S) with cytosine (1), cytidine (2), and cytarabine (3) were measured in the region 2800-3600 cm(-1). Comparison of the IRMPD spectra with the corresponding ONIOM (B3LYP/6-31(d):UFF)-calculated absorption frequencies allowed the assessment of the vibrational modes that are responsible for the observed spectroscopic features. All of the complexes investigated, apart from [R?H?3](+), showed similar IRMPD spectra, which points to similar structural and conformational landscapes. Their IRMPD spectra agree with the formation of several isomeric structures in the ESI source, wherein the N(3)-protonated guest establishes noncovalent interactions with the host amidocarbonyl groups that are either oriented inside the host cavity or outside it between one of the bridged side-chains and the upper aromatic nucleus. The IRMPD spectrum of the [R?H?3](+) complex was clearly different from the others. This difference is attributed to the effect of intramolecular hydrogen-bonding interactions between the C(2')-OH group and the aglycone oxygen atom of the nucleosidic guest upon repulsive interactions between the same oxygen atom and the aromatic rings of the host.  相似文献   

13.
Arrhenius activation energies in the zero-pressure limit for dissociation of gas-phase proton-bound homodimers of N,N-dimethylacetamide (N,N-DMA), glycine, alanine, and lysine and the heterodimer alanine.glycine were measured using blackbody infrared radiative dissociation (BIRD). In combination with master equation modeling of the kinetic data, binding energies of these dimers were determined. A value of 1.25 +/- 0.05 eV is obtained for N,N-DMA and is in excellent agreement with that reported in the literature. The value obtained from the truncated Boltzmann model is significantly higher, indicating that the assumptions of this model do not apply to these ions. This is due to the competitive rates of photon emission and dissociation for these relatively large ions. The binding energies of the amino acid dimers are ~1.15 +/- 0.05 eV and are indistinguishable despite the difference in their gas-phase basicity and structure. The threshold dissociation energies can be accurately modeled using a range of dissociation parameters and absorption/emission rates. However, the absolute values of the dissociation rates depend more strongly on the absorption/emission rates. For N,N-DMA and glycine, an accurate fit was obtained using frequencies and transition dipole moments calculated at the ab initio RHF/2-31G* and MP2/2-31G* level, respectively. In order to obtain a similar accuracy using values obtained from AM1 semiempirical calculations, it was necessary to multiply the transition dipole moments by a factor of 3. These results demonstrate that in combination with master equation modeling, BIRD can be used to obtain accurate threshold dissociation energies of relatively small ions of biological interest.  相似文献   

14.
Infrared spectra of the protonated monomers of glycine, alanine, valine, and leucine methyl esters are presented. These protonated species are generated in the gas phase via matrix assisted laser desorption ionization (MALDI) within the cell of a Fourier transform ion cyclotron resonance spectrometer (FTICR) where they are subsequently mass selected as the only species trapped in the FTICR cell. Alternatively, they have also been generated by electrospray ionization and transferred to a Paul ion-trap mass spectrometer where they are similarly isolated. In both cases IR spectra are then derived from the frequency dependence of the infrared multiple photon dissociation (IRMPD) in the mid-infrared region (1000-2200 cm(-1)), using the free electron laser facility Centre de Laser Infrarouge d'Orsay (CLIO). IR bands are assigned by comparison with the calculated vibrational spectra of the lowest energy isomers using density functional theory (DFT) calculations. There is in general good agreement between experimental IRMPD spectra and calculated IR absorption spectra for the lowest energy conformer which provides evidence for conformational preferences. The two different approaches to ion generation and trapping yield IRMPD spectra that are in excellent agreement.  相似文献   

15.
The gas-phase ion-molecule reactions of 1,1,3,3-tetrafluorodimethyl ether and water have been examined using Fourier transform ion cyclotron resonance mass spectrometry, infrared multiphoton dissociation (IRMPD) spectroscopy, and ab initio molecular orbital calculations. This reaction sequence leads to the efficient bimolecular production of the proton-bound dimer of water (H5O2+). Evidence for the dominant mechanistic pathway involving the reaction of CF2H-O=CHF+, an ion of m/z 99, with water is presented. The primary channel occurs via nucleophilic attack of water on the ion of m/z 99 (CF2H-O=CHF+), to lose formyl fluoride and yield-protonated difluoromethanol (m/z 69). Association of a second water molecule with protonated difluoromethanol generates a reactive intermediate that decomposes via a 1,4-elimination to release hydrogen fluoride and yield the proton-bound dimer of water and formyl fluoride (m/z 67). Last, the elimination of formyl fluoride occurs by the association of a third water molecule to produce H5O2+ (m/z 37). The most probable isomeric forms of the ions with m/z 99 and 69 were found using IRMPD spectroscopy and electronic structure theory calculations. Thermochemical information for reactant, transition state, and product species was obtained using MP2(full)/6-311+G**//6-31G* level of theory.  相似文献   

16.
Infrared multiple photon dissociation (IRMPD) spectroscopy experiments and quantum chemical calculations have been used to explore the possible structures of protonated azidothymidine and the corresponding protonated dimer. Many interesting differences between the protonated and neutral forms of azidothymidine were found, particularly associated with keto-enol tautomerization. Comparison of computational vibrational and the experimental IMRPD spectra show good agreement and give confidence that the dominant protonated species has been identified. The protonated dimer of azidothymidine exhibits three intramolecular hydrogen bonds. The IRMPD spectrum of the protonated dimer is consistent with the spectrum of the most stable computational structure. This work brings to light interesting keto-enol tautomerization and exocyclic hydrogen bonding involving azidothymidine and its protonated dimer. The fact that one dominant protonated species is observed in the gas phase, despite both the keto and enol structures being similar in energy, is proposed to be the direct result of the electrospray ionization process in which the dominant protonated dimer structure dissociates in the most energetically favorable way.
Figure
?  相似文献   

17.
IR spectra of photopolymerized fullerene films obtained by simultaneous deposition and UV irradiation were measured in the range of 1500-450 cm(-1). The degree of the polymerization of the C60 films was estimated to be about 95%. To assist the assignment of the experimental IR spectra of the films, quantum chemical calculations of the equilibrium structures of the C60 dimers and trimers were performed at the DFT(B3LYP)/3-21G level of theory. Next, IR frequencies and intensities for those structures were calculated. For the five-trimer structures found in the calculations, the relative stabilities were determined at the B3LYP/4-31G and B3LYP/6-31G levels and used to select the lowest-energy trimers, which are Trimer A (angle between monomer centers is 90 degrees ) and Trimer B (angle between monomer centers is 120 degrees). Next, the IR spectra of the polymerized fullerene films were compared with the calculated frequencies of the lowest-energy dimer and the two lowest-energy trimers. On the basis of this analysis and on the comparison of the film spectra with the IR spectra of the C60 dimer and trimer spectra obtained by other methods, it was shown that the main components of the films are C60 dimers and the orthorhombic (O) polymer phase. The tetragonal (T) and rhombohedral (R) polymers, as well as small amounts of monomers, were also found. Although vibrational frequencies of different C60 phases are similar in most cases, we found several unique spectral features of the C60 dimer and other polymers that may be used to determine the composition of the polymerized C60 film.  相似文献   

18.
We report a study on different ionization states and conformations of the bimolecular (Gly)2 system by means of quantum mechanical calculations. Optimized geometries for energy minima of the glycine dimer, as well as relative energies and free energies were computed as a function of the medium: gas phase, nonpolar polarizable solvent, and aqueous solution. The polarizable continuum model was employed to account for solvation effects. Energy calculations were done using the MP2/aug‐cc‐pVTZ and B3LYP/6‐311+G(2df,2p) methods on B3LYP/6‐31+G(d,p) optimized structures (some single‐point energy calculations were also done using the B3PW91 and PBE1KCIS methods). Ionized forms of the glycine dimer (either zwitterion–zwitterion or neutral–zwitterion) are predicted to exist in all media, in contrast to amino acid monomers. In aqueous solution, dimerization is an exergonic process (?4 kcal mol?1). Thus, according to our results, zwitterion–zwitterion Gly dimers might be abundant in supersaturated glycine aqueous solutions, a fact that has been connected with the structure of α‐glycine crystals but that remains controversial in the literature. Another noticeable result is that zwitterion–zwitterion interactions are substantially underestimated when computed using methods based on density functional theory. For comparison, some calculations for the dimer of the simplest chiral amino acid alanine were done as well and differences to the glycine dimer are discussed.  相似文献   

19.
Primary and secondary amines, when examined in atmospheric pressure chemical ionization, electrospray ionization, or chemical ionization, display protonated imines in their mass spectra. These products arise formally by nucleophilic substitution at the α-carbon with loss of both ammonia and molecular hydrogen. Collision-induced dissociation (CID) is used to characterize the product ions by comparison with authentic protonated imines. Gas-phase ion/molecule reactions of protonated amines with neutral amines also yield products that correspond to protonated imines (deamination and dehydrogenation), as well as providing simple deamination products. The reaction mechanism was investigated further by reacting the deamination product, the alkyl cation, with a neutral amine. The observed dehydrogenation of the nascent protonated secondary amine indicates that the reaction sequence is loss of ammonia followed by dehydrogenation even though the isolated protonated secondary amines did not undergo dehydrogenation upon CID. Formation of the deamination products in the protonated amine/amine reaction is competitive with proton-bound dimer formation. The proton-bound dimers do not yield deamination products under CID conditions in the ion trap or in experiments performed using a pentaquadrupole instrument. This demonstrates that the geometry of the proton-bound dimer, in which the α-carbons of the alkylamines are well separated [C a -N-H-N-C a ], is an unsuitable entry point on the potential energy hypersurface for formation of the imine [C a -N-C a ]. Isolation of the proton-bound dimers in the quadrupole ion trap is achieved with low efficiency and this characteristic can be used to distinguish them from their covalently bound isomers.  相似文献   

20.
The gas phase structures of cationized histidine (His), including complexes with Li(+), Na(+), K(+), Rb(+), and Cs(+), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser, in conjunction with quantum chemical calculations. To identify the structures present in the experimental studies, measured IRMPD spectra are compared to spectra calculated at B3LYP/6-311+G(d,p) (Li(+), Na(+), and K(+) complexes) and B3LYP/HW*/6-311+G(d,p) (Rb(+) and Cs(+) complexes) levels of theory, where HW* indicates that the Hay-Wadt effective core potential with additional polarization functions was used on the metals. Single point energy calculations were carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set. On the basis of these experiments and calculations, the only conformation that reproduces the IRMPD action spectra for the complexes of the smaller alkali metal cations, Li(+)(His) and Na(+)(His), is a charge-solvated, tridentate structure where the metal cation binds to the backbone carbonyl oxygen, backbone amino nitrogen, and nitrogen atom of the imidazole side chain, [CO,N(α),N(1)], in agreement with the predicted ground states of these complexes. Spectra of the larger alkali metal cation complexes, K(+)(His), Rb(+)(His), and Cs(+)(His), have very similar spectral features that are considerably more complex than the IRMPD spectra of Li(+)(His) and Na(+)(His). For these complexes, the bidentate [CO,N(1)] conformer in which the metal cation binds to the backbone carbonyl oxygen and nitrogen atom of the imidazole side chain is a dominant contributor, although features associated with the tridentate [CO,N(α),N(1)] conformer remain, and those for the [COOH] conformer are also clearly present. Theoretical results for Rb(+)(His) and Cs(+)(His) indicate that both [CO,N(1)] and [COOH] conformers are low-energy structures, with different levels of theory predicting different ground conformers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号