首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A series of 2-deoxy-2-iodo-α-d-mannopyranosylbenzotriazoles was synthesized using the benzyl, 4,6-benzylidene and acetyl protected D-glucal in the presence of N-iodosuccinimide (NIS). Subsequent removal of the iodine at the C-2 position using tributyltin hydride under free radical conditions afforded the 2-deoxy-α-d-glucopyranosylbenzotriazoles in moderate to high yields. This method was extended to the preparation of substituted 2-deoxy-β-d-glucopyranosylimidazoles as well. The stereoselectivity of the addition reaction and the effect of the protecting group and temperature on anomer distribution of the benzotriazole series were also investigated. The anticancer properties of the newly synthesized compounds were evaluated in a series of viability studies using HeLa (human cervical adenocarcinoma), human breast and lung cancer cell lines. The N-[3,4,6-tri-O-benzyl-2-deoxy-α-d-glucopyranosyl]-1H-benzotriazole and the N-[3,4,6-tri-O-acetyl-2-deoxy-α-d-glucopyranosyl]-2H-benzotriazole were found to be the most potent cancer cell inhibitors at 20 µM concentrations across all four cell lines.  相似文献   

2.
The in vitro activity of L. donovani (promastigotes, axenic amastigotes and intracellular amastigotes in THP1 cells) and T. brucei, from the fractions obtained from the hydroalcoholic extract of the aerial part of Hypericum afrum and the isolated compounds, has been evaluated. The chloroform, ethyl acetate and n-butanol extracts showed significant antitrypanosomal activity towards T. brucei, with IC50 values of 12.35, 13.53 and 12.93 µg/mL and with IC90 values of 14.94, 19.31 and 18.67 µg/mL, respectively. The phytochemical investigation of the fractions led to the isolation and identification of quercetin (1), myricitrin (2), biapigenin (3), myricetin (4), hyperoside (5), myricetin-3-O-β-d-galactopyranoside (6) and myricetin-3’-O-β-d-glucopyranoside (7). Myricetin-3’-O-β-d-glucopyranoside (7) has been isolated for the first time from this genus. The chemical structures were elucidated by using comprehensive one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) spectroscopic data, as well as high-resolution electrospray ionization mass spectrometry (HR-ESI–MS). These compounds have also been evaluated for their antiprotozoal activity. Quercetin (1) and myricetin (4) showed noteworthy activity against T. brucei, with IC50 and IC90 values of 7.52 and 5.71 µM, and 9.76 and 7.97 µM, respectively. The T. brucei hexokinase (TbHK1) enzyme was further explored as a potential target of quercetin and myricetin, using molecular modeling studies. This proposed mechanism assists in the exploration of new candidates for novel antitrypanosomal drugs.  相似文献   

3.
The emetic Bacillus cereus toxin cereulide presents an enormous safety hazard in the food industry, inducing emesis and nausea after the consumption of contaminated foods. Additional to cereulide itself, seven structurally related isoforms, namely the isocereulides A–G, have already been elucidated in their chemical structure and could further be identified in B. cereus contaminated food samples. The newly performed isolation of isocereulide A allowed, for the first time, 1D- and 2D-NMR spectroscopy of a biosynthetically produced isocereulide, revealing results that contradict previous assumptions of an l-O-Leu moiety within its chemical structure. By furthermore applying posthydrolytical dipeptide analysis, amino acid and α-hydroxy acid analysis by means of UPLC-ESI-TOF-MS, as well as MSn sequencing, the structure of previously reported isocereulide A could be corrected. Instead of the l-O-Leu as assumed to date, one l-O-Ile unit could be verified in the cyclic dodecadepsipeptide, revising the structure of isocereulide A to [(d-O-Leu-d-Ala-l-O-Val-l-Val)2(d-O-Leu-d-Ala-l-O-Ile-l-Val)].  相似文献   

4.
Kaempferol is a well-known antioxidant found in many plants and plant-based foods. In plants, kaempferol is present mainly in the form of glycoside derivatives. In this work, we focused on determining the effect of kaempferol and its glycoside derivatives on the expression level of genes related to the reduction of oxidative stress—NFE2L2, NQO1, SOD1, SOD2, and HO-1; the enzymatic activity of superoxide dismutases; and the level of glutathione. We used HL-60 acute promyelocytic leukemia cells, which were incubated with the anticancer drug etoposide and kaempferol or one of its three glycoside derivatives isolated from the aerial parts of Lens culinaris Medik.—kaempferol 3-O-[(6-O-E-caffeoyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P2), kaempferol 3-O-[(6-O-E-p-coumaroyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P5), and kaempferol 3-O-[(6-O-E-feruloyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P7). We showed that none of the tested compounds affected NFE2L2 gene expression. Co-incubation with etoposide (1 µM) and kaempferol (10 and 50 µg/mL) leads to an increase in the expression of the HO-1 (9.49 and 9.33-fold at 10 µg/mL and 50 µg/mL, respectively), SOD1 (1.68-fold at 10 µg/mL), SOD2 (1.72-fold at 10–50 µg/mL), and NQO1 (1.84-fold at 50 µg/mL) genes in comparison to cells treated only with etoposide. The effect of kaempferol derivatives on gene expression differs depending on the derivative. All tested polyphenols increased the SOD activity in cells co-incubated with etoposide. We observed that the co-incubation of HL-60 cells with etoposide and kaempferol or derivative P7 increases the level of total glutathione in these cells. Taken together, our observations suggest that the antioxidant activity of kaempferol is related to the activation of antioxidant genes and proteins. Moreover, we observed that glycoside derivatives can have a different effect on the antioxidant cellular systems than kaempferol.  相似文献   

5.
In recent years, the use of Sideritis species as bioactive agents is increasing exponentially. The present study aimed to investigate the chemical constituents, as well as the anti-ageing potential of the cultivated Sideritis euboea Heldr. The chemical fingerprinting of the ethyl acetate residue of this plant was studied using 1D and 2D-NMR spectra. Isomeric compounds belonging to acylated flavone derivatives and phenylethanoid glycosides were detected in the early stage of the experimental process through 2D-NMR techniques. Overall, thirty-three known compounds were isolated and identified. Some of them are reported for the first time not only in S. euboea, but also in genus Sideritis L. The anti-ageing effect of the ethyl acetate residue and the isolated specialized products was assessed as anti-hyaluronidase activity. In silico docking simulation revealed the interactions of the isolated compounds with hyaluronidase. Furthermore, the in vitro study on the inhibition of hyaluronidase unveiled the potent inhibitory properties of ethyl acetate residue and apigenin 7-O-β-d-glucopyranoside. Though, the isomers of apigenin 7-O-p-coumaroyl-glucosides and also the 4′-methyl-hypolaetin 7-O-[6′′′-O-acetyl-β-d-allopyranosyl]-(1→2)-β-d-glucopyranoside exerted moderate hyaluronidase inhibition. This research represents the first study to report on the anti-hyaluronidase activity of Sideritis species, confirming its anti-inflammatory, cytotoxic and anti-ageing effects and its importance as an agent for cosmetic formulations as also anticancer potential.  相似文献   

6.
Amomum Villosum Lour. (A. villosum) is a folk medicine that has been used for more than 1300 years. However, study of the polysaccharides of A. villosum is seriously neglected. The objectives of this study are to explore the structural characteristics of polysaccharides from A. villosum (AVPs) and their effects on immune cells. In this study, the acidic polysaccharides (AVPG-1 and AVPG-2) were isolated from AVPs and purified via anion exchange and gel filtration chromatography. The structural characteristics of the polysaccharides were characterized by methylation, HPSEC-MALLS-RID, HPLC, FT-IR, SEM, GC-MS and NMR techniques. AVPG-1 with a molecular weight of 514 kDa had the backbone of → 4)-α-d-Glcp-(1 → 3,4)-β-d-Glcp-(1 → 4)-α-d-Glcp-(1 →. AVPG-2 with a higher molecular weight (14800 kDa) comprised a backbone of → 4)-α-d-Glcp-(1 → 3,6)-β-d-Galp-(1 → 4)-α-d-Glcp-(1 →. RAW 264.7 cells were used to investigate the potential effect of AVPG-1 and AVPG-2 on macrophages, and lipopolysaccharide (LPS) was used as a positive control. The results from bioassays showed that AVPG-2 exhibited stronger immunomodulatory activity than AVPG-1. AVPG-2 significantly induced nitric oxide (NO) production as well as the release of interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), and upregulated phagocytic capacities of RAW 264.7 cells. Real-time PCR analysis revealed that AVPG-2 was able to turn the polarization of macrophages to the M1 direction. These results suggested that AVPs could be explored as potential immunomodulatory agents of the functional foods or complementary medicine.  相似文献   

7.
A dozen Iris species (Iridaceae) are considered traditional remedies in Kurdistan, especially for treating inflammations. Phytochemical studies are still scarce. The information reported in the literature about Iris species growing in Kurdistan has been summarized in the first part of this paper, although, except for Iris persica, investigations have been performed on vegetal samples collected in countries different from Kurdistan. In the second part of the work, we have investigated, for the first time, the contents of the methanolic extracts of Iris postii aerial parts and rhizomes that were collected in Kurdistan. Both extracts exhibited a significant dose-dependent free radical scavenging and total antioxidant activities, comparable to those of ascorbic acid. Medium-pressure liquid chromatographic separations of the two extracts afforded l-tryptophan, androsin, isovitexin, swertisin, and 2″-O-α-l-rhamnopyranosyl swertisin from the aerial parts, whereas ε-viniferin, trans-resveratrol 3,4′-O-di-β-d-glucopyranoside, and isotectorigenin were isolated from the rhizomes. This is the first finding of the last three metabolites from an Iris species. The various remarkable biological activities of isolated compounds scientifically sustain the traditional use of I. postii as a medicinal plant.  相似文献   

8.
A series of 1,2,3-triazolyl nucleoside analogues in which 1,2,3-triazol-4-yl-β-d-ribofuranosyl fragments are attached via polymethylene linkers to both nitrogen atoms of the heterocycle moiety (uracil, 6-methyluracil, thymine, quinazoline-2,4-dione, alloxazine) or to the C-5 and N-3 atoms of the 6-methyluracil moiety was synthesized. All compounds synthesized were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1) and coxsackievirus B3. Antiviral assays revealed three compounds, 2i, 5i, 11c, which showed moderate activity against influenza virus A H1N1 with IC50 values of 57.5 µM, 24.3 µM, and 29.2 µM, respectively. In the first two nucleoside analogues, 1,2,3-triazol-4-yl-β-d-ribofuranosyl fragments are attached via butylene linkers to N-1 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine, respectively). In nucleoside analogue 11c, two 1,2,3-triazol-4-yl-2′,3′,5′-tri-O-acetyl-β-d-ribofuranose fragments are attached via propylene linkers to the C-5 and N-3 atoms of the 6-methyluracil moiety. Almost all synthesized 1,2,3-triazolyl nucleoside analogues showed no antiviral activity against the coxsackie B3 virus. Two exceptions are 1,2,3-triazolyl nucleoside analogs 2f and 5f, in which 1,2,3-triazol-4-yl-2′,3′,5′-tri-O-acetyl-β-d-ribofuranose fragments are attached to the C-5 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine respectively). These compounds exhibited high antiviral potency against the coxsackie B3 virus with IC50 values of 12.4 and 11.3 µM, respectively, although both were inactive against influenza virus A H1N1. According to theoretical calculations, the antiviral activity of the 1,2,3-triazolyl nucleoside analogues 2i, 5i, and 11c against the H1N1 (A/PR/8/34) influenza virus can be explained by their influence on the functioning of the polymerase acidic protein (PA) of RNA-dependent RNA polymerase (RdRp). As to the antiviral activity of nucleoside analogs 2f and 5f against coxsackievirus B3, it can be explained by their interaction with the coat proteins VP1 and VP2.  相似文献   

9.
Diabetes mellitus is a chronic disease and one of the fastest-growing health challenges of the last decades. Studies have shown that chronic low-grade inflammation and activation of the innate immune system are intimately involved in type 2 diabetes pathogenesis. Momordica charantia L. fruits are used in traditional medicine to manage diabetes. Herein, we report the purification of a new 23-O-β-d-allopyranosyl-5β,19-epoxycucurbitane-6,24-diene triterpene (charantoside XV, 6) along with 25ξ-isopropenylchole-5(6)-ene-3-O-β-d-glucopyranoside (1), karaviloside VI (2), karaviloside VIII (3), momordicoside L (4), momordicoside A (5) and kuguaglycoside C (7) from an Indian cultivar of Momordica charantia. At 50 µM compounds, 2–6 differentially affected the expression of pro-inflammatory markers IL-6, TNF-α, and iNOS, and mitochondrial marker COX-2. Compounds tested for the inhibition of α-amylase and α-glucosidase enzymes at 0.87 mM and 1.33 mM, respectively. Compounds showed similar α-amylase inhibitory activity than acarbose (0.13 mM) of control (68.0–76.6%). Karaviloside VIII (56.5%) was the most active compound in the α-glucosidase assay, followed by karaviloside VI (40.3%), while momordicoside L (23.7%), A (33.5%), and charantoside XV (23.9%) were the least active compounds. To better understand the mode of binding of cucurbitane-triterpenes to these enzymes, in silico docking of the isolated compounds was evaluated with α-amylase and α-glucosidase.  相似文献   

10.
Cyclodextrins are widely used cyclic oligosaccharides of d-glucose whose hydrophilic exterior is covered by hydroxyl groups and whose hydrophobic interior is surrounded by lipophilic moieties. Because of this structural feature, cyclodextrin molecules commonly aggregate into dimensional structures via intermolecular hydrogen bonds, and their aggregation into closed oligomeric architectures has been achieved only via the attachment of functional substituent groups to the cyclodextrin rings. Here, we report the first structurally characterized self-assembly of non-substituted γ-cyclodextrin molecules into cyclic hexamers, which was realized in a chiral coordination framework composed of complex-anions with d-penicillamine rather than l- or dl-penicillamine. The self-assembly is accompanied by the 3D-to-2D structural transformation of porous coordination frameworks to form helical hexagonal cavities that accommodate helical γ-cyclodextrin hexamers. This finding provides new insight into the development of cyclodextrin chemistry and host–guest chemistry based on chiral recognition and crystal engineering processes.

The complex anions with d-penicillamine are organized into a 3D porous framework that allows the inclusion of γ-CD. The inclusion is accompanied by the 3D-to-2D transformation of porous frameworks so as to accept cyclic hexamers of γ-CD.  相似文献   

11.
Four oleanane-type glycosides were isolated from a horticultural cultivar “Green Elf” of the endemic Pittosporum tenuifolium (Pittosporaceae) from New Zealand: three acylated barringtogenol C glycosides from the leaves, with two previously undescribed 3-O-β-d-glucopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucuronopyranosyl-21-O-angeloyl-28-O-acetylbarringtogenol C, 3-O-β-d-galactopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucuronopyranosyl-21-O-angeloyl-28-O-acetylbarringtogenol C, and the known 3-O-β-d-glucopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucuronopyranosyl-21-O-angeloyl-28-O-acetylbarringtogenol C (Eryngioside L). From the roots, the known 3-O-β-d-glucopyranosyl-(1→2)-β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyloleanolic acid (Sandrosaponin X) was identified. Their structures were elucidated by spectroscopic methods including 1D- and 2D-NMR experiments and mass spectrometry (ESI-MS). According to their structural similarities with gymnemic acids, the inhibitory activities on the sweet taste TAS1R2/TAS1R3 receptor of an aqueous ethanolic extract of the leaves and roots, a crude saponin mixture, 3-O-β-d-glucopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-β-d-glucuronopyranosyl-21-O-angeloyl-28-O-acetylbarringtogenol C, and Eryngioside L were evaluated.  相似文献   

12.
Herein, we devised a method for stereoselective O-glycosylation using an Ir(i)-catalyst which enables both hydroalkoxylation and nucleophilic substitution of glycals with varying substituents at the C3 position. In this transformation, 2-deoxy-α-O-glycosides were acquired when glycals equipped with a notoriously poor leaving group at C3 were used; in contrast 2,3-unsaturated-α-O-glycosides were produced from glycals that bear a good leaving group at C3. Mechanistic studies indicate that both reactions proceed via the directing mechanism, through which the acceptor coordinates to the Ir(i) metal in the α-face-coordinated Ir(i)-glycal π-complex and then attacks the glycal that contains the O-glycosidic bond in a syn-addition manner. This protocol exhibits good functional group tolerance and is exemplified with the preparation of a library of oligosaccharides in moderate to high yields and with excellent stereoselectivities.

Ir(i)-catalyzed α-selective O-glycosylation of glycals provided an access to both 2-deoxyglycosides and 2,3-unsaturated glycosides with a broad substrate scope. The underlying rationale of α-selectivity has been illustrated by the DFT study.  相似文献   

13.
Uranium nitride compounds are important molecular analogues of uranium nitride materials such as UN and UN2 which are effective catalysts in the Haber–Bosch synthesis of ammonia, but the synthesis of molecular nitrides remains a challenge and studies of the reactivity and of the nature of the bonding are poorly developed. Here we report the synthesis of the first nitride bridged uranium complexes containing U(vi) and provide a unique comparison of reactivity and bonding in U(vi)/U(vi), U(vi)/U(v) and U(v)/U(v) systems. Oxidation of the U(v)/U(v) bis-nitride [K2{U(OSi(OtBu)3)3(μ-N)}2], 1, with mild oxidants yields the U(v)/U(vi) complexes [K{U(OSi(OtBu)3)3(μ-N)}2], 2 and [K2{U(OSi(OtBu)3)3}2(μ-N)2(μ-I)], 3 while oxidation with a stronger oxidant (“magic blue”) yields the U(vi)/U(vi) complex [{U(OSi(OtBu)3)3}2(μ-N)2(μ-thf)], 4. The three complexes show very different stability and reactivity, with N2 release observed for complex 4. Complex 2 undergoes hydrogenolysis to yield imido bridged [K2{U(OSi(OtBu)3)3(μ-NH)}2], 6 and rare amido bridged U(iv)/U(iv) complexes [{U(OSi(OtBu)3)3}2(μ-NH2)2(μ-thf)], 7 while no hydrogenolysis could be observed for 4. Both complexes 2 and 4 react with H+ to yield quantitatively NH4Cl, but only complex 2 reacts with CO and H2. Differences in reactivity can be related to significant differences in the U–N bonding. Computational studies show a delocalised bond across the U–N–U for 1 and 2, but an asymmetric bonding scheme is found for the U(vi)/U(vi) complex 4 which shows a U–N σ orbital well localised to U Created by potrace 1.16, written by Peter Selinger 2001-2019 N and π orbitals which partially delocalise to form the U–N single bond with the other uranium.

The first examples of molecular compounds containing the cyclic (U(vi)N)2 and (U(v)U(vi)N)2 cores were obtained by oxidation of the (U(v)U(v)N)2 analogue. Different bonding within these complexes yields different stability and reactivity with CO and H2.  相似文献   

14.
Dysregulation of glycogen phosphorylase, an enzyme involved in glucose homeostasis, may lead to a number of pathological states such as type 2 diabetes and cancer, making it an important molecular target for the development of new forms of pharmaceutical intervention. Based on our previous work on the design and synthesis of 4-arylamino-1-(β-d-glucopyranosyl)pyrimidin-2-ones, which inhibit the activity of glycogen phosphorylase by binding at its catalytic site, we report herein a general synthesis of 2-substituted-5-(β-d-glucopyranosyl)pyrimidin-4-ones, a related class of metabolically stable, C-glucosyl-based, analogues. The synthetic development consists of a metallated heterocycle, produced from 5-bromo-2-methylthiouracil, in addition to protected d-gluconolactone, followed by organosilane reduction. The methylthio handle allowed derivatization through hydrolysis, ammonolysis and arylamine substitution, and the new compounds were found to be potent (μM) inhibitors of rabbit muscle glycogen phosphorylase. The results were interpreted with the help of density functional theory calculations and conformational analysis and were compared with previous findings.  相似文献   

15.
Three new flavone glycosides, one known flavone glycoside, and the phenolic derivative apiopaenonside were isolated and identified from the ethyl acetate fraction of the aerial parts of Scleranthus perennis. The planar structures were elucidated through extensive analysis of UV-Vis, IR, and 1H NMR and 13C NMR spectral data, including the 2D techniques COSY, HSQC, and HMBC, as well as ESI mass spectrometry. The isolated compounds were established as 5,7,3′-trihydroxy-4′-acetoxyflavone-8-C-β-d-xylopyranoside-2′′-O-glucoside (1), 5,7,3′-trihydroxy-4′-methoxyflavone-8-C-β-d-xylopyranoside-2′′-O-glucoside (2), 5,7-dihydroxy-3′-methoxy-4′-acetoxyflavone-8-C-β-d-xylopyranoside-2′′-O-glucoside (3), 5,7-dihydroxy-3′-methoxy-4′-acetoxyflavone-8-C-β-d-xylopyranoside-2′′-O-(4′′′-acetoxy)-glucoside (4), and apiopaenonside (5). Moreover, all isolated compounds were evaluated for anti-collagenase activity. All compounds exhibited moderate inhibitory activity with IC50 values ranging from 36.06 to 70.24 µM.  相似文献   

16.
Heterocycles have been widely used in organic synthesis, agrochemical, pharmaceutical and materials science industries. Catalytic three-component ylide formation/cycloaddition enables the assembly of complex heterocycles from simple starting materials in a highly efficient manner. However, asymmetric versions remain a yet-unsolved task. Here, we present a new bimetallic catalytic system for tackling this challenge. A combined system of Rh(ii) salt and chiral N,N′-dioxide–Sm(iii) complex was established for promoting the unprecedented tandem carbonyl ylide formation/asymmetric [4 + 3]-cycloaddition of aldehydes and α-diazoacetates with β,γ-unsaturated α-ketoesters smoothly, affording various chiral 4,5-dihydro-1,3-dioxepines in up to 97% yield, with 99% ee. The utility of the current method was demonstrated by conversion of products to optically active multi-substituted tetrahydrofuran derivatives. A possible reaction mechanism was provided to elucidate the origin of chiral induction based on experimental studies and X-ray structures of catalysts and products.

Catalytic asymmetric tandem carbonyl ylide formation/[4 + 3]-cycloaddition of β,γ-unsaturated α-ketoesters, aldehydes and α-diazoacetates was achieved by using a bimetallic rhodium(ii)/chiral N,N′-dioxide–Sm(iii) complex catalyst.  相似文献   

17.
We report kinetically controlled chiral supramolecular polymerization based on ligand–metal complex with a 3 : 2 (L : Ag+) stoichiometry accompanying a helical inversion in water. A new family of bipyridine-based ligands (d-L1, l-L1, d-L2, and d-L3) possessing hydrazine and d- or l-alanine moieties at the alkyl chain groups has been designed and synthesized. Interestingly, upon addition of AgNO3 (0.5–1.3 equiv.) to the d-L1 solution, it generated the aggregate I composed of the d-L1AgNO3 complex (d-L1 : Ag+ = 1 : 1) as the kinetic product with a spherical structure. Then, aggregate I (nanoparticle) was transformed into the aggregate II (supramolecular polymer) based on the (d-L1)3Ag2(NO3)2 complex as the thermodynamic product with a fiber structure, which led to the helical inversion from the left-handed (M-type) to the right-handed (P-type) helicity accompanying CD amplification. In contrast, the spherical aggregate I (nanoparticle) composed of the d-L1AgNO3 complex with the left-handed (M-type) helicity formed in the presence of 2.0 equiv. of AgNO3 and was not additionally changed, which indicated that it was the thermodynamic product. The chiral supramolecular polymer based on (d-L1)3Ag2(NO3)2 was produced via a nucleation–elongation mechanism with a cooperative pathway. In thermodynamic study, the standard ΔG° and ΔHe values for the aggregates I and II were calculated using the van''t Hoff plot. The enhanced ΔG° value of the aggregate II compared to that of the formation of aggregate I confirms that aggregate II was thermodynamically more stable. In the kinetic study, the influence of concentration of AgNO3 confirmed the initial formation of the aggregate I (nanoparticle), which then evolved to the aggregate II (supramolecular polymer). Thus, the concentration of the (d-L1)3Ag2(NO3)2 complex in the initial state plays a critical role in generating aggregate II (supramolecular polymer). In particular, NO3 acts as a critical linker and accelerator in the transformation from the aggregate I to the aggregate II. This is the first example of a system for a kinetically controlled chiral supramolecular polymer that is formed via multiple steps with coordination structural change.

The nanoparticles were transformed into the supramolecular polymer as the thermodynamic product, involving a helical inversion from left-handed to right-handed helicity.  相似文献   

18.
In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6′-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM).  相似文献   

19.
A clustering-triggered emission (CTE) strategy, namely the formation of heterogeneous clustered chromophores and conformation rigidification, for achieving tunable multicolor phosphorescence in single-component compounds is proposed. Non-conventional luminophores comprising just oxygen functionalities and free of π-bonding, i.e., d-(+)-xylose (d-Xyl), pentaerythritol (PER), d-fructose (d-Fru) and d-galactose (d-Gal), were adopted as a simple model system with an explicit structure and molecular packing to address the hypothesis. Their concentrated solutions and crystals at 77 K or under ambient conditions demonstrate remarkable multicolor phosphorescence afterglows in response to varying excitation wavelengths, because of the formation of diverse oxygen clusters with sufficiently rigid conformations. The intra- and inter-molecular O⋯O interactions were definitely illustrated by both single crystal structure analysis and theoretical calculations. These findings shed new light on the origin and simple achievement of tunable multicolor phosphorescence in single-component pure organics, and in turn, have strong implications for the emission mechanism of non-conventional luminophores.

A clustering-triggered emission strategy is proposed to readily realize tunable multicolor afterglows in single-component pure organic compounds.  相似文献   

20.
This work emphasizes easy access to α-vinyl and aryl amino acids via Ni-catalyzed cross-electrophile coupling of bench-stable N-carbonyl-protected α-pivaloyloxy glycine with vinyl/aryl halides and triflates. The protocol permits the synthesis of α-amino acids bearing hindered branched vinyl groups, which remains a challenge using the current methods. On the basis of experimental and DFT studies, simultaneous addition of glycine α-carbon (Gly) radicals to Ni(0) and Ar–Ni(ii) may occur, with the former being more favored where oxidative addition of a C(sp2) electrophile to the resultant Gly–Ni(i) intermediate gives a key Gly–Ni(iii)–Ar intermediate. The auxiliary chelation of the N-carbonyl oxygen to the Ni center appears to be crucial to stabilize the Gly–Ni(i) intermediate.

We have developed Ni-catalyzed reductive coupling of N-carbonyl protected α-pivaloyloxy glycine with Csp2-electrophiles that enabled facile preparation of α-amino acids, including those bearing hindered branched vinyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号